Advertisement

TrustFound: Towards a Formal Foundation for Model Checking Trusted Computing Platforms

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8442)

Abstract

Trusted computing relies on formally verified trusted computing platforms to achieve high security assurance. In practice, however, new platforms are often proposed without a comprehensive formal evaluation and explicitly defined underlying assumptions. In this work, we propose TRUSTFOUND, a formal foundation and framework for model checking trusted computing platforms. TRUSTFOUND includes a logic for formally modeling platforms, a model of trusted computing techniques and a broad spectrum of threat models. It can be used to check platforms on security properties (e.g., confidentiality and attestability) and uncover the implicit assumptions that must be satisfied to guarantee the security properties. In our experiments, TRUSTFOUND is used to encode and model check two trusted platforms. It has identified a total of six implicit assumptions and two severe previously-unknown logic flaws from them.

Keywords

Model Check Security Property Label Transition System Trust Platform Module Threat Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    The AVISPA project homepage, http://www.avispa-project.org/
  4. 4.
  5. 5.
    Trusted Platform Module (TPM): Built-in Authentication, http://www.trustedcomputinggroup.org/solutions/authentication
  6. 6.
  7. 7.
    Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The spi Calculus. Information and Computation 148(1), 1–70 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Ables, K., Ryan, M.D.: Escrowed Data and the Digital Envelope. In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 246–256. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM: Virtualizing the Trusted Platform Module. In: USENIX Security Symposium (2006)Google Scholar
  10. 10.
    Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: IEEE Computer Security Foundations Workshop (CSFW) (2001)Google Scholar
  11. 11.
    Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay Attack in TCG Specification and Solution. In: Annual Computer Security Applications Conference (ACSAC) (2005)Google Scholar
  12. 12.
    Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. ACM Transactions on Computer Systems 8, 18–36 (1990)CrossRefGoogle Scholar
  13. 13.
    Chen, L., Li, J.: Flexible and Scalable Digital Signatures in TPM 2.0. In: ACM Conference on Computer and Communications Security (CCS) (2013)Google Scholar
  14. 14.
    Chen, L., Ryan, M.: Offline Dictionary Attack on TCG TPM Weak Authorisation Data, and Solution. In: Future of Trust in Computing (2008)Google Scholar
  15. 15.
    Cooper, A., Martin, A.: Towards a Secure, Tamper-Proof Grid Platform. In: IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (2006)Google Scholar
  16. 16.
    Datta, A., Franklin, J., Garg, D., Kaynar, D.: A Logic of Secure Systems and Its Application to Trusted Computing. In: IEEE Symposium on Security and Privacy (S&P) (2009)Google Scholar
  17. 17.
    Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A Formal Analysis of Authentication in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 111–125. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal Analysis of Protocols Based on TPM State Registers. In: IEEE Computer Security Foundations Symposium (CSF) (2011)Google Scholar
  19. 19.
    Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Transactions on Information Theory 29(2), 198–208 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
  21. 21.
  22. 22.
    Gürgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security Evaluation of Scenarios Based on the TCG’s TPM Specification. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 438–453. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Hendricks, J., van Doorn, L.: Secure Bootstrap is Not Enough: Shoring Up the Trusted Computing Base. In: ACM SIGOPS European Workshop (2004)Google Scholar
  24. 24.
    Kauer, B.: OSLO: Improving the Security of Trusted Computing. In: USENIX Security (2007)Google Scholar
  25. 25.
    Kursawe, K., Schellekens, D., Preneel, B.: Analyzing Trusted Platform Communication. In: ECRYPT Workshop, CRASH-CRyptographic Advances in Secure Hardware (2005)Google Scholar
  26. 26.
    Mackie, K.: Wave Outlines Windows 8 Mobile Device Management AlternativeGoogle Scholar
  27. 27.
    McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an Execution Infrastructure for TCB Minimization. In: ACM SIGOPS/EuroSys European Conference on Computer Systems (Eurosys) (2008)Google Scholar
  28. 28.
    Mukhamedov, A., Gordon, A.D., Ryan, M.: Towards a Verified Reference Implementation of a Trusted Platform Module. In: Christianson, B., Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp. 69–81. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Namiluko, C., Martin, A.: An Abstract Model of a Trusted Platform. In: Chen, L., Yung, M. (eds.) INTRUST 2010. LNCS, vol. 6802, pp. 47–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Memoir: Practical State Continuity for Protected Modules. In: IEEE Symposium on Security and Privacy (S&P) (2011)Google Scholar
  31. 31.
    Sadeghi, A.-R., Selhorst, M., Stüble, C., Wachsmann, C., Winandy, M.: TCG Inside?: A Note on TPM Specification Compliance. In: ACM Workshop on Scalable Trusted Computing (STC) (2006)Google Scholar
  32. 32.
    Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a TCG-Based Integrity Measurement Architecture. In: USENIX Security Symposium (2004)Google Scholar
  33. 33.
    Sparks, E.R.: A Security Assessment of Trusted Platform Modules. Technical Report TR2007-597, Dartmouth College, Computer Science (2007)Google Scholar
  34. 34.
    Stumpf, F., Tafreschi, O., Röder, P., Eckert, C.: A Robust Integrity Reporting Protocol for Remote Attestation. In: Workshop on Advances in Trusted Computing (WATC) (2006)Google Scholar
  35. 35.
    Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating Specification and Programs for System Modeling and Verification. In: International Symposium on Theoretical Aspects of Software Engineering (TASE) (2009)Google Scholar
  36. 36.
    Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Wojtczuk, R., Rutkowska, J.: Attacking Intel Trusted Execution Technology. In: Black Hat DC (2009)Google Scholar
  38. 38.
    Wojtczuk, R., Rutkowska, J., Tereshkin, A.: Another Way to Circumvent Intel Trusted Execution Technology. Invisible Things Lab (2009)Google Scholar
  39. 39.
    Woo, T.Y.C., Lam, S.S.: A Semantic Model for Authentication Protocols. In: IEEE Symposium on Security and Privacy (S&P) (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.National University of SingaporeSingapore
  2. 2.Nanyang Technological UniversitySingapore
  3. 3.Shandong UniversityChina
  4. 4.University of OxfordUK

Personalised recommendations