Contracts in Practice

  • H. -Christian Estler
  • Carlo A. Furia
  • Martin Nordio
  • Marco Piccioni
  • Bertrand Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8442)

Abstract

Contracts are a form of lightweight formal specification embedded in the program text. Being executable parts of the code, they encourage programmers to devote proper attention to specifications, and help maintain consistency between specification and implementation as the program evolves. The present study investigates how contracts are used in the practice of software development. Based on an extensive empirical analysis of 21 contract-equipped Eiffel, C#, and Java projects totaling more than 260 million lines of code over 7700 revisions, it explores, among other questions: 1) which kinds of contract elements (preconditions, postconditions, class invariants) are used more often; 2) how contracts evolve over time; 3) the relationship between implementation changes and contract changes; and 4) the role of inheritance in the process. It has found, among other results, that: the percentage of program elements that include contracts is above 33% for most projects and tends to be stable over time; there is no strong preference for a certain type of contract element; contracts are quite stable compared to implementations; and inheritance does not significantly affect qualitative trends of contract usage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.: Specification and verification: the Spec# experience. Comm. ACM 54(6), 81–91 (2011)CrossRefGoogle Scholar
  2. 2.
    Chalin, P.: Are practitioners writing contracts? In: Butler, M., Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.) Fault-Tolerant Systems. LNCS, vol. 4157, pp. 100–113. Springer, Heidelberg (2006)Google Scholar
  3. 3.
  4. 4.
    Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., Schiller, T.W.: Building and using pluggable type-checkers. In: ICSE, pp. 681–690. ACM (2011)Google Scholar
  5. 5.
    Drossopoulou, S., Francalanza, A., Müller, P., Summers, A.J.: A unified framework for verification techniques for object invariants. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 412–437. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S., Xiao, C.: The Daikon system for dynamic detection of likely invariants. Sci. Comput. Program. 69, 35–45 (2007)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Estler, H.C., Furia, C.A., Nordio, M., Piccioni, M., Meyer, B.: Contracts in practice (2013), extended version with appendix http://arxiv.org/abs/1211.4775
  8. 8.
    Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC, pp. 2103–2110. ACM (2010)Google Scholar
  9. 9.
    Fluri, B., Würsch, M., Gall, H.: Do code and comments co-evolve? on the relation between source code and comment changes. In: WCRE, pp. 70–79. IEEE (2007)Google Scholar
  10. 10.
    García-Duque, J., Pazos-Arias, J., López-Nores, M., Blanco-Fernández, Y., Fernández-Vilas, A., Díaz-Redondo, R., Ramos-Cabrer, M., Gil-Solla, A.: Methodologies to evolve formal specifications through refinement and retrenchment in an analysis-revision cycle. Requirements Engineering 14, 129–153 (2009)CrossRefGoogle Scholar
  11. 11.
    Henkel, J., Reichenbach, C., Diwan, A.: Discovering documentation for Java container classes. IEEE Trans. Software Eng. 33(8), 526–543 (2007)CrossRefGoogle Scholar
  12. 12.
    Hindle, A., Bird, C., Zimmermann, T., Nagappan, N.: Relating requirements to implementation via topic analysis. In: ICSM (2012)Google Scholar
  13. 13.
    Kim, M., Cai, D., Kim, S.: An empirical investigation into the role of API-level refactorings during software evolution. In: ICSE, pp. 151–160. ACM (2011)Google Scholar
  14. 14.
    Kiniry, J.R., Zimmerman, D.M.: Secret ninja formal methods. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 214–228. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Kudrjavets, G., Nagappan, N., Ball, T.: Assessing the relationship between software assertions and faults: An empirical investigation. In: ISSRE, pp. 204–212 (2006)Google Scholar
  16. 16.
    Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In: Behavioral Specifications of Businesses and Systems, pp. 175–188. Kluwer Academic Publishers (1999)Google Scholar
  17. 17.
    Martin, J.K., Hirschberg, D.S.: Small sample statistics for classification error rates II. Tech. rep., CS Department, UC Irvine (1996), http://goo.gl/Ec8oD
  18. 18.
    Meyer, B.: Object Oriented Software Construction, 2nd edn. Prentice Hall PTR (1997)Google Scholar
  19. 19.
    Meyer, B., Kogtenkov, A., Stapf, E.: Avoid a Void: the eradication of null dereferencing. In: Reflections on the Work of C.A.R., pp. 189–211. Springer (2010)Google Scholar
  20. 20.
    Müller, M.M., Typke, R., Hagner, O.: Two controlled experiments concerning the usefulness of assertions as a means for programming. In: ICSM, pp. 84–92 (2002)Google Scholar
  21. 21.
    Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun. ACM 15(12), 1053–1058 (1972)CrossRefGoogle Scholar
  22. 22.
    Parnas, D.L.: Precise documentation: The key to better software. In: The Future of Software Engineering, pp. 125–148. Springer (2011)Google Scholar
  23. 23.
    Polikarpova, N., Ciupa, I., Meyer, B.: A comparative study of programmer-written and automatically inferred contracts. In: ISSTA, pp. 93–104 (2009)Google Scholar
  24. 24.
    Polikarpova, N., Furia, C.A., Pei, Y., Wei, Y., Meyer, B.: What good are strong specifications? In: ICSE, pp. 257–266. ACM (2013)Google Scholar
  25. 25.
    Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible invariants through semantic collaboration. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 505–520. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Pradel, M., Gross, T.R.: Automatic testing of sequential and concurrent substitutability. In: ICSE, pp. 282–291. ACM (2013)Google Scholar
  27. 27.
    Schiller, T.W., Donohue, K., Coward, F., Ernst, M.D.: Writing and enforcing contract specifications. In: ICSE. ACM (2014)Google Scholar
  28. 28.
    Tempero, E., Yang, H.Y., Noble, J.: What programmers do with inheritance in Java. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 577–601. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. Autom. Softw. Eng. 18(3-4), 263–292 (2011)CrossRefGoogle Scholar
  30. 30.
    Wei, Y., Furia, C.A., Kazmin, N., Meyer, B.: Inferring better contracts. In: ICSE, pp. 191–200 (2011)Google Scholar
  31. 31.
    Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice and experience. ACM CSUR 41(4) (2009)Google Scholar
  32. 32.
    Zaidman, A., Van Rompaey, B., Demeyer, S., van Deursen, A.: Mining software repositories to study co-evolution of production and test code. In: ICST, pp. 220 –229 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • H. -Christian Estler
    • 1
  • Carlo A. Furia
    • 1
  • Martin Nordio
    • 1
  • Marco Piccioni
    • 1
  • Bertrand Meyer
    • 1
  1. 1.Software Engineering, Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations