Skip to main content

Shape Functions

  • Chapter
  • First Online:
Meshless Methods in Biomechanics

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 16))

  • 1590 Accesses

Abstract

This chapter explicitly shows how to construct shape functions for meshless methods. The chapter starts with the introduction of the “support-domain” concept which permits to identify the field nodes contributing to the construction of the shape function. Afterwards, the most popular approximation function is presented: the moving least square (MLS) approximation function. The construction procedure is presented in detail as well as the most important numerical properties of the MLS approximation function. Additionally the importance of the weight function used in the construction of the MLS shape function is shown. Then, the radial point interpolation (RPI) functions are presented. Again, an exhaustive description of the RPI shape function construction is presented supported by examples and explicative algorithms. The most important numerical properties of the RPI shape function are demonstrated. In addition, it is shown the relevance of the radial basis function (RBF) used to construct the RPI shape function, as well as the influence of the RBF shape parameters on the final solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zienkiewicz OC, Taylor RL (1994) The finite element method, 4th edn. McGraw-Hill, London

    Google Scholar 

  2. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  3. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu GR (2002) Mesh free methods-moving beyond the finite element method. CRC Press, Boca Raton

    Book  Google Scholar 

  5. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Netherlands

    Google Scholar 

  6. Lancaster P, Salkauskas K (1981) Surfaces generation by moving least squares methods. Math Comput 37:141–158

    Article  MATH  MathSciNet  Google Scholar 

  7. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin method. Int J Numer Meth Eng 37:229–256

    Article  MATH  MathSciNet  Google Scholar 

  9. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MATH  MathSciNet  Google Scholar 

  10. Oñate E, Perazzo F, Miquel J (2001) A finite point method for elasticity problems. Comput Struct 79(22–25):2151–2163

    Article  Google Scholar 

  11. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element free Galerkin methods for crack tip fields. Int J Numer Meth Eng 40:1483–1504

    Article  MathSciNet  Google Scholar 

  12. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1):3–47

    Article  MATH  Google Scholar 

  13. Dolbow J, Belytschko T (1998) An introduction to programming the meshless element free Galerkin method. Arch Comput Mech 5(3):207–241

    Article  MathSciNet  Google Scholar 

  14. Belinha J, Dinis LMJS (2006) Elasto-plastic analysis of plates using the element free Galerkin method. Eng Comput 23(3):525–551

    Article  MATH  Google Scholar 

  15. Belinha J, Dinis LMJS (2006) Analysis of plates and laminates using the element free Galerkin method. Comput Struct 84(22–23):1547–1559

    Article  Google Scholar 

  16. Belinha J, Dinis LMJS (2007) Non linear analysis of plates and laminates using the element free Galerkin method. Compos Struct 78(3):337–350

    Article  Google Scholar 

  17. Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods. Comput Mech 24(5):348–372

    Article  MATH  Google Scholar 

  18. Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131(1–2):133–145

    Article  MATH  MathSciNet  Google Scholar 

  19. Belytschko T, Gu L, Lu YY (1994) Fracture and crack growth by element free Galerkin methods. Model Simul Mater Sci Eng 2(3A):519–534

    Article  MathSciNet  Google Scholar 

  20. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315

    Article  Google Scholar 

  21. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Meth Eng 50:937–951

    Article  MATH  Google Scholar 

  22. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648

    Article  MATH  Google Scholar 

  23. Wang JG, Liu GR (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Eng 191:2611–2630

    Article  MATH  Google Scholar 

  24. Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    Article  MATH  MathSciNet  Google Scholar 

  25. Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput Math Appl 19(8–9):147–161

    Article  MATH  MathSciNet  Google Scholar 

  26. Duan Y (2008) A note on the meshless method using radial basis functions. Comput Math Appl 55(19):66–75

    Article  MATH  MathSciNet  Google Scholar 

  27. Wu Z (1995) Compactly supported positive definite radial functions. Adv Comput Math 4:283–292

    Article  MATH  MathSciNet  Google Scholar 

  28. Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approximation Theor 93:258–272

    Article  MATH  MathSciNet  Google Scholar 

  29. Belinha J, Jorge RMN, Dinis LMJS (2013) The natural radial element method. Int J Numer Meth Eng 93(12):1286–1313

    Article  MathSciNet  Google Scholar 

  30. Belinha J, Jorge RMN, Dinis LMJS (2013) Composite laminated plate analysis using the natural radial element method. Compos Struct 103(1):50–67

    Article  Google Scholar 

  31. Belinha J, Jorge RMN, Dinis LMJS (2013) Analysis of thick plates by the natural radial element method. Int J Mech Sci 76(1):33–48

    Article  Google Scholar 

  32. Hardy RL (1990) Theory and applications of the multiquadrics—Biharmonic method (20 years of discovery 1968–1988). Comput Math Appl 19(8–9):163–208

    Article  MATH  MathSciNet  Google Scholar 

  33. Dinis LMJS, Jorge RMN, Belinha J (2007) Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput Methods Appl Mech Eng 196(13–16):2009–2028

    Article  MATH  Google Scholar 

  34. Dinis LMJS, Jorge RMN, Belinha J (2008) Analysis of plates and laminates using the natural neighbour radial point interpolation method. Eng Anal Boundary Elem 32(3):267–279

    Article  MATH  Google Scholar 

  35. Moreira S, Belinha J, Dinis LMJS, Jorge RMN (2014) Analysis of laminated beams using the natural neighbour radial point interpolation method. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. http://dx.doi.org/10.1016/j.rimni.2013.02.002

  36. Golberg MA, Chen CS, Bowman H (1999) Some recent results and proposals for the use of radial basis functions in the BEM. Eng Anal Boundary Elem 23:285–296

    Article  MATH  Google Scholar 

  37. Duchon J (1976) Splines minimizing rotation invariant seminorms in Sobolev spaces. In: Schemmp W, Zeller K (eds) Constructive theory of functions of several variables. Lecture notes in Mathematics. Springer, Berlin

    Google Scholar 

  38. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396

    Article  MATH  MathSciNet  Google Scholar 

  39. Gu YT, Wang W, Zhang LC, Feng XQ (2011) An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Eng Fract Mech 78:175–190

    Article  Google Scholar 

  40. Liu GR, Gu YT, Dai KY (2004) Assessment and applications of interpolation methods for computational mechanics. Int J Numer Meth Eng 59:1373–1379

    Article  MATH  Google Scholar 

  41. Liu GR (2002) A point assembly method for stress analysis for two-dimensional solids. Int J Solid Struct 39:261–276

    Article  MATH  Google Scholar 

  42. Gu YT (2005) Meshfree methods and their comparisons. Int J Comput Methods 2(4):477–515

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Belinha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belinha, J. (2014). Shape Functions. In: Meshless Methods in Biomechanics. Lecture Notes in Computational Vision and Biomechanics, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-06400-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06400-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06399-7

  • Online ISBN: 978-3-319-06400-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics