Quantum Cluster Equilibrium

  • Barbara Kirchner
  • Frank Weinhold
  • Joachim Friedrich
  • Eva Perlt
  • Sebastian B. C. Lehmann
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

The Quantum Cluster Equilibrium model which has been developed within the past two decades is presented. It constitutes an alternative for the investigation of fluid phases and phase transitions. In that contribution, a conceptual overview is given. It is explained, how a limited number of molecular clusters is employed for the description of the liquid phase and the computation of thermodynamic properties. Herein, high-level electronic structure methods may be transferred to macroscopic phases via statistical mechanics. The suggested method is employed so that liquid water may be treated at the coupled-cluster level including single, double and perturbative triple excitations.

Keywords

Static quantum chemical calculations Coulombic interaction Dispersion Liquid phase Coupled-cluster 

References

  1. 1.
    Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Electronic-structure calculations on workstation computers–the program system turbomole. Chem. Phys. Lett. 162, 165 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Andrews, T.: The Bakerian lecture: on the continuity of the gaseous and liquid states of matter. Philos. T. Roy. Soc. Lond. 159, 575–590 (1869). doi: 10.1098/rstl.1869.0021. http://rstl.royalsocietypublishing.org/content/159/575.short
  3. 3.
    Bates, D.M., Smith, J.R., Janowski, T., Tschumper, G.S.: Development of a 3-body: many-body integrated fragmentation method for weakly bound clusters and application to water clusters \(({\rm {H}}_2 {\rm {O}})_{n = 3--10,16,17}\). 135(4), 044123 (2011). doi: 10.1063/1.3609922. http://link.aip.org/link/?JCP/135/044123/1
  4. 4.
    Bischoff, F.A., Wolfsegger, S., Tew, D.P., Klopper, W.: Assessment of basis sets for f12 explicitly-correlated molecular electronic-structure methods. Mol. Phys. 107(8–12), 963–975 (2009). doi: 10.1080/00268970802708942. http://www.tandfonline.com/doi/abs/10.1080/00268970802708942
  5. 5.
    Boese, A.D., Jansen, G., Torheyden, M., Hofener, S., Klopper, W.: Effects of counterpoise correction and basis set extrapolation on the MP2 geometries of hydrogen bonded dimers of ammonia, water, and hydrogen fluoride. Phys. Chem. Chem. Phys. 13, 1230–1238 (2011). doi: 10.1039/C0CP01493A. http://dx.doi.org/10.1039/C0CP01493A
  6. 6.
    Borowski, P., Jaroniec, J., Janowski, T., Wolinski, K.: Quantum cluster equilibrium theory treatment of hydrogen-bonded liquids: water, methanol and ethanol. Mol. Phys. 101(10), 1413–1421 (2003). doi: 10.1080/0026897031000085083 ADSCrossRefGoogle Scholar
  7. 7.
    Briant, C.L., Burton, J.J.: A molecular model for nucleation of water on Ions. J. Atmos. Sci. 33, 1357–1361 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    Brown, T.L., LeMay Jr, H.E., Bursten, B.E., Burdge, J.R.: Chemistry: the Central Science, p. 413, 9th edn. Prentice-Hall, Upper Saddle River, NJ (2003)Google Scholar
  9. 9.
    Brüssel, M., Perlt, E., Lehmann, S.B.C., von Domaros, M., Kirchner, B.: Binary systems from quantum cluster equilibrium theory. J. Chem. Phys. 135, 194113 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Brüssel, M., Perlt, E., von Domaros, M., Brehm, M., Kirchner, B.: A one-parameter quantum cluster equilibrium approach. J. Chem. Phys. 137(16), 164107 (2012). doi: 10.1063/1.4759154. http://link.aip.org/link/?JCP/137/164107/1
  11. 11.
    Brüssel, M., Zahn, S., Hey-Hawkins, E., Kirchner, B.: Theoretical investigation of solvent effects and complex systems: toward the calculations of bioinorganic systems from ab initio molecular dynamics simulations and static quantum chemistry. Adv. Inorg. Chem. 62, 111–142 (2010)CrossRefGoogle Scholar
  12. 12.
    Burton, J.J.: Configuration, energy, and heat capacity of small spherical clusters of atoms. J. Chem. Phys. 52(1), 345–352 (1970)ADSCrossRefGoogle Scholar
  13. 13.
    Burton, J.J.: Free energy of small face centered cubic clusters of atoms. J. Chem. Soc. Faraday Trans. I I (69), 540–550 (1973)CrossRefGoogle Scholar
  14. 14.
    Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory. J. Chem. Phys. 126(8), 084108 (2007). doi: 10.1063/1.2436888. http://link.aip.org/link/?JCP/126/084108/1
  15. 15.
    di Dio, P.J., Zahn, S., Stark, C.B.W., Kirchner, B.: Understanding selectivities in ligand-free oxidative cyclizations of 1,5- and 1,6-dienes with RuO\(_4\) from density functional theory. Z. Naturforsch. 65b, 367–375 (2010)Google Scholar
  16. 16.
    Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989). doi: 10.1063/1.456153. http://link.aip.org/link/?JCP/90/1007/1
  17. 17.
    Foster, J.P., Weinhold, F.: Natural hybrid orbitals. J. Am. Chem. Soc. 102(24), 7211–7218 (1980). doi: 10.1021/ja00544a007. http://pubs.acs.org/doi/abs/10.1021/ja00544a007
  18. 18.
    Friedrich, J.: Incremental scheme for intermolecular interactions: benchmarking the accuracy and the efficiency. J. Chem. Theor. Comput. 8(5), 1597–1607 (2012). doi: 10.1021/ct200686h. http://pubs.acs.org/doi/abs/10.1021/ct200686h
  19. 19.
    Friedrich, J., Dolg, M.: Implementation and performance of a domain-specific basis set incremental approach for correlation energies: applications to hydrocarbons and a glycine oligomer. J. Chem. Phys. 129(24), 244105 (2008). doi: 10.1063/1.3043797. http://link.aip.org/link/?JCP/129/244105/1
  20. 20.
    Friedrich, J., Dolg, M.: Fully automated incremental evaluation of MP2 and CCSD(T) energies: Application to water clusters. J. Chem. Theor. Comput. 5(2), 287–294 (2009). doi: 10.1021/ct800355e. http://pubs.acs.org/doi/abs/10.1021/ct800355e
  21. 21.
    Friedrich, J., Hanrath, M., Dolg, M.: Energy screening for the incremental scheme: application to intermolecular interactions. J. Phys. Chem. A 111(39), 9830–9837 (2007). doi: 10.1021/jp072256y. http://pubs.acs.org/doi/abs/10.1021/jp072256y
  22. 22.
    Friedrich, J., Hanrath, M., Dolg, M.: Fully automated implementation of the incremental scheme: application to CCSD energies for hydrocarbons and transition metal compounds. J. Chem. Phys. 126(15), 154110 (2007). doi: 10.1063/1.2721538. http://link.aip.org/link/?JCP/126/154110/1
  23. 23.
    Friedrich, J., Walczak, K.: Incremental csd(t)(f12)-mp2-f12a method to obtain highly accurate CCSD(T) energies for large molecules. J. Chem. Phys. 9(1), 408–417 (2013). doi: 10.1021/ct300938w. http://pubs.acs.org/doi/abs/10.1021/ct300938w
  24. 24.
    Gibbs, J.W.: Elementary principles in statistical mechanics: developed with especial reference to the rational foundations of thermodynamics. Yale bicentennial publications. C. Scribner’s sons (1902). http://books.google.de/books?id=2oc-AAAAIAAJ
  25. 25.
    Halkier, A., Helgaker, T., Jørgenson, P., Klopper, W., Koch, H., Olsen, J., Wilson, A.K.: Basis-set convergence in correlated calculations on Ne, \({\text{ N }}_2\), and \({\text{ H }}_2\)O. Chem. Phys. Lett. 286, 243–252 (1998)Google Scholar
  26. 26.
    Halkier, A., Klopper, W., Helgaker, T., Jorgensen, P., Taylor, P.R.: Basis set convergence of the interaction energy of hydrogen-bonded complexes. J. Chem. Phys. 111(20), 9157–9167 (1999). doi: 10.1063/1.479830. http://link.aip.org/link/?JCP/111/9157/1
  27. 27.
    Hansen, M.J., Wendt, M.A., Weinhold, F.: Tests of quantum cluster equilibrium (QCE)-based computational methods for describing formic acid clustering. Mol. Phys. 101(8), 1147–1153 (2003). doi: 10.1080/0026897031000075679 ADSCrossRefGoogle Scholar
  28. 28.
    Hättig, C., Klopper, W., Köhn, A., Tew, D.P.: Explicitly correlated electrons in molecules. Chem. Rev. 112(1), 4–74 (2012). doi: 10.1021/cr200168z. http://pubs.acs.org/doi/abs/10.1021/cr200168z
  29. 29.
    Helgaker, T., Jørgensen, P., Olsen, J.: Molecular Electronic-Structure Theory. Wiley-VCH, Chichester (2004).Google Scholar
  30. 30.
    Huber, H., Dyson, A.J., Kirchner, B.: Calculation of bulk properties of liquids and supercritical fluids from pure theory. 28, 121–133 (1999)Google Scholar
  31. 31.
    Huelsekopf, M., Ludwig, R.: Temperature dependence of hydrogen bonding in alcohols. J. Mol. Liq. 85(1–2, Sp. Iss. SI), 105–125 (2000).Google Scholar
  32. 32.
    Huelsekopf, M., Ludwig, R.: Correlations between structural, NMR and IR spectroscopic properties of N-methylacetamide. Magn. Reson. Chem. 39(Sp. Iss. SI), S127–S134 (2001).Google Scholar
  33. 33.
    Huelsekopf, M., Ludwig, R.: Hydrogen bonding in a sterically hindered alcohol. J. Mol. Liq. 98–99(Sp. Iss. SI), 163–171 (2002)Google Scholar
  34. 34.
    Kendall, R.A., Dunning, T.H., Harrison, R.J.: Electron affinities of the first-row atoms revisited. systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796–6806 (1992). doi: 10.1063/1.462569. http://link.aip.org/link/?JCP/96/6796/1
  35. 35.
    Kirchner, B.: Cooperative versus dispersion effects: what is more important in an associated liquid like water? J. Chem. Phys. 123, 204116 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    Kirchner, B.: Theory of complicated liquids. Phys. Rep. 440(1–3), 1–111 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Kirchner, B., Ermakova, E., Solca, J., Huber, H.: Chemical accuracy obtained in an ab initio molecular dynamics simulation of a fluid by including a three-body potential. 4, 383–388 (1998)Google Scholar
  38. 38.
    Kirchner, B., Spickermann, C., Lehmann, S.B.C., Perlt, E., Langner, J., von Domaros, M., Reuther, P., Uhlig, F., Kohagen, M., Brüssel, M.: What can clusters tell us about the bulk? peacemaker: Extended quantum cluster equilibrium calculations. Comp. Phys. Comm. 182, 1428–1446 (2011)ADSCrossRefMATHGoogle Scholar
  39. 39.
    Kotz, J.C., Treichel, P.M., Townsend, J.R.: Chemistry and Chemical Reactivity, p. 562, 7th edn. Brooks-Cole, Belmont, CA (2009)Google Scholar
  40. 40.
    Lehmann, S.B.C., Spickermann, C., Kirchner, B.: Quantum cluster equilibrium theory applied in hydrogen bond number studies of water. Part I: Assessment of the quantum cluster equilibrium model for liquid water. J. Chem. Theor. Comput. 5, 1640–1649 (2009)Google Scholar
  41. 41.
    Lehmann, S.B.C., Spickermann, C., Kirchner, B.: Quantum cluster equilibrium theory applied in hydrogen bond number studies of water. Part II: Icebergs in a two-dimensional water continuum? J. Chem. Theor. Comput. 5, 1650–1656 (2009)Google Scholar
  42. 42.
    Lenz, A., Ojamae, L.: A theoretical study of water clusters: the relation between hydrogen-bond topology and interaction energy from quantum-chemical computations for clusters with up to 22 molecules. Phys. Chem. Chem. Phys. 7(9), 1905–1911 (2005). doi: 10.1039/b502109j CrossRefGoogle Scholar
  43. 43.
    Lenz, A., Ojamae, L.: A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O)(n), n=1-60, and ice. J. Chem. Phys. 131(13), 134302 (2009). doi: 10.1063/1.3239474 ADSCrossRefGoogle Scholar
  44. 44.
    Linstrom, P.J., Mallard, W.G. (eds.): NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov), Jan 2011
  45. 45.
    Ludwig, R.: Isotopic quantum effects in liquid methanol. ChemPhysChem 6(7), 1376–1380 (2005). doi: 10.1002/cphc.200400664 CrossRefGoogle Scholar
  46. 46.
    Ludwig, R.: The structure of liquid methanol. ChemPhysChem 6(7), 1369–1375 (2005). doi: 10.1002/cphc.200400663 CrossRefGoogle Scholar
  47. 47.
    Ludwig, R.: The importance of tetrahedrally coordinated molecules for the explanation of liquid water properties. ChemPhysChem 8(6), 938–943 (2007)CrossRefMathSciNetGoogle Scholar
  48. 48.
    Ludwig, R., Behler, J., Klink, B., Weinhold, F.: Molecular composition of liquid sulfur. Angew. Chem. Int. Ed. 41(17), 3199–3202 (2002). doi: 10.1002/1521-3773(20020902)41:17<3199::AID-ANIE3199>3.0.CO;2-9. http://onlinelibrary.wiley.com/doi/10.1002/1521-3773%2820020902%2941:17%3C3203::AID-ANIE3203%3E3.0.CO;2-K/full
  49. 49.
    Ludwig, R., Reis, O., Winter, R., Weinhold, F., Farrar, T.C.: Quantum cluster equilibrium theory of liquids: temperature dependence of hydrogen bonding in liquid N-methylacetamide studied by IR spectra. J. Phys. Chem. B 102(46), 9312–9318 (1998)CrossRefGoogle Scholar
  50. 50.
    Ludwig, R., Weinhold, F.: Quantum cluster equilibrium theory of liquids: freezing of QCE/3-21G water to tetrakaidecahedral “Bucky-ice”. J. Chem. Phys. 110(1), 508–515 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    Ludwig, R., Weinhold, F.: Quantum cluster equilibrium theory of liquids: light and heavy QCE/3-21G model water. Phys. Chem. Chem. Phys. 2(8), 1613–1619 (2000)CrossRefGoogle Scholar
  52. 52.
    Ludwig, R., Weinhold, F.: Quantum cluster equilibrium theory of liquids: Isotopically substituted QCE/3-21G model water. Z. Phys. Chem. 216(Part 5), 659–674 (2002)Google Scholar
  53. 53.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Experimental and theoretical determination of the temperature-dependence of deuteron and oxygen quadrupole coupling-constants of liquid water. J. Chem. Phys. 103(16), 6941–6950 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Experimental and theoretical studies of hydrogen bonding in neat, liquid formamide. J. Chem. Phys. 102(13), 5118–5125 (1995). doi: 10.1063/1.469237. http://link.aip.org/link/?JCP/102/5118/1
  55. 55.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Temperature-dependence of hydrogen-bonding in neat, liquid formamide. J. Chem. Phys. 103(9), 3636–3642 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Structure of liquid N-methylacetamide: temperature dependence of NMR chemical shifts and quadrupole coupling constants. J. Phys. Chem. A 101(47), 8861–8870 (1997). doi: 10.1063/1.474411. http://link.aip.org/link/?JCP/107/499/1
  57. 57.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Theoretical study of hydrogen bonding in liquid and gaseous N-methylformamide. J. Chem. Phys. 107(2), 499–507 (1997)ADSCrossRefGoogle Scholar
  58. 58.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Quantum cluster equilibrium theory of liquids part I: molecular clusters and thermodynamics of liquid ammonia. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 102(2), 197–204 (1998)CrossRefGoogle Scholar
  59. 59.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Quantum cluster equilibrium theory of liquids part II: temperature dependent chemical shifts, quadrupole coupling constants and vibrational frequencies in liquid ammonia. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 102(2), 205–212 (1998)CrossRefGoogle Scholar
  60. 60.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Quantum cluster equilibrium theory of liquids: molecular clusters and thermodynamics of liquid ethanol. Mol. Phys. 97(4), 465–477 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    Ludwig, R., Weinhold, F., Farrar, T.C.: Quantum cluster equilibrium theory of liquids: Temperature dependent chemical shifts, quadrupole coupling constants and vibrational frequencies in liquid ethanol. Mol. Phys. 97(4), 479–486 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    Matisz, G., Fabian, W.M.F., Kelterer, A.-M., Kunsagi-Mate, S.: Weinhold’s QCE model–A modified parameter fit. Model study of liquid methanol based on MP2 cluster geometries. Theochem-J. Mol. Struct. 956(1–3), 103–109 (2010). doi: 10.1016/j.theochem.2010.07.003
  63. 63.
    Mayer, J.E., Mayer, M.G.: Statistical Mechanics. Wiley (1947). http://books.google.de/books?id=VuMNAQAAIAAJ
  64. 64.
    McQuarrie, D.A.: Statistical Mechanics. University Science Books (1973). http://books.google.de/books?id=itcpPnDnJM0C
  65. 65.
    McQuarrie, D.A., Simon, J.D.: Molecular Thermodynamics. University Science Books (1999)Google Scholar
  66. 66.
    Mhin, B.J., Lee, S.J., Kim, K.S.: Water-cluster distribution with respect to pressure and temperature in the gas-phase. Phys. Rev. A 48(5), 3764–3770 (1993)ADSCrossRefGoogle Scholar
  67. 67.
    Nesbet, R.K.: Atomic Bethe-Goldstone Equations, pp. 1–34. Wiley (2007). doi: 10.1002/9780470143599.ch1. http://dx.doi.org/10.1002/9780470143599.ch1
  68. 68.
    Neugebauer, J., Reiher, M., Kind, C., Hess, B.A.: Quantum chemical calculation of vibrational spectra of large molecules–raman and ir spectra for buckminsterfullerene. J. Comput. Chem. 23(9), 895–910 (2002). doi: 10.1002/jcc.10089 CrossRefGoogle Scholar
  69. 69.
    Ohlinger, W.S., Klunzinger, P.E., Deppmeier, B.J., Hehre, W.J.: Efficient calculation of heats of formation. J. Phys. Chem. A 113(10), 2165–2175 (2009). doi: 10.1021/jp810144q. http://pubs.acs.org/doi/abs/10.1021/jp810144q
  70. 70.
    Perlt, E., Friedrich, J., von Domaros, M., Kirchner, B.: Importance of structural motifs in liquid hydrogen fluoride. ChemPhysChem 12, 3474–3482 (2011)CrossRefGoogle Scholar
  71. 71.
    Pfleiderer, T., Waldner, I., Bertagnolli, H., Tödheide, K., Kirchner, B., Huber, H., Fischer, H.E.: The structure of fluid argon from high-pressure neutron diffraction and ab initio md-simulation. J. Chem. Phys. 111, 2641–2646 (1999)ADSCrossRefGoogle Scholar
  72. 72.
    Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88(6), 899–926 (1988). doi: 10.1021/cr00088a005. http://pubs.acs.org/doi/abs/10.1021/cr00088a005
  73. 73.
    Schäfer, A., Horn, H., Ahlrichs, R.: Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992)ADSCrossRefGoogle Scholar
  74. 74.
    Silberberg, M.: Chemistry: The Molecular Nature of Matter and Change, p. 452. McGraw-Hill Education, 5th edn. (2009). http://books.google.de/books?id=NcL3kQAACAAJ
  75. 75.
    Silla, E., Tuñón, I., Pascual-Ahuir, J.L.: Gepol: An improved description of molecular surfaces ii. computing the molecular area and volume. J. Comput. Chem. 12(9), 1077–1088 (1991). doi: 10.1002/jcc.540120905. http://dx.doi.org/10.1002/jcc.540120905
  76. 76.
    Solca, J., Dyson, A.J., Steinebrunner, G., Kirchner, B., Huber, H.: Melting curves for neon calculated from pure theory. J. Chem. Phys. 108, 4107–4111 (1998)ADSCrossRefGoogle Scholar
  77. 77.
    Song, H.-J., Xiao, H.-M., Dong, H.-S., Huang, Y.-G.: Intermolecular interactions and nature of cooperative effects in linear cis, cis-cyclotriazane clusters (n=2-8). Theochem-J. Mol. Struct. 767(1–3), 67–73 (2006). doi: 10.1016/j.theochem.2006.04.045 CrossRefGoogle Scholar
  78. 78.
    Spickermann, C., Lehmann, S.B.C., Kirchner, B.: Introducing phase transitions to quantum chemistry: from Trouton’s rule to first principles vaporization entropies. J. Chem. Phys. 128(24), 244506 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    Stoll, H.: The correlation energy of crystalline silicon. Chem. Phys. Lett. 191(6), 548–552 (1992). http://dx.doi.org/10.1016/0009-2614(92)85587-Z, http://www.sciencedirect.com/science/article/pii/000926149285587Z
  80. 80.
    Stoll, H.: Correlation energy of diamond. Phys. Rev. B 46, 6700–6704 (Sep 1992). doi: 10.1103/PhysRevB.46.6700. http://link.aps.org/doi/10.1103/PhysRevB.46.6700
  81. 81.
    Stoll, H.: On the correlation energy of graphite. J. Chem. Phys. 97(11), 8449–8454 (1992). doi: 10.1063/1.463415. http://link.aip.org/link/?JCP/97/8449/1
  82. 82.
    Tro, N.J.: Chemistry: A Molecular Approach, p. 464, 2nd edn. Prentice-Hall, Boston (2011)Google Scholar
  83. 83.
    van der Waals, J.D.: Over de Continuiteit van den Gas-en Vloeistoftoestand. Ph.D. thesis, Leiden University, The Netherlands (1873)Google Scholar
  84. 84.
    Van der Waals, J.H.: The equation of state for gases and liquids. In: Nobel Lecture (1910). http://www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf
  85. 85.
    Weinhold, F.: Quantum cluster equilibrium theory. In: First US-Israel Meeting on Theoretical Chemistry, Berkeley, California. Lawrence Berkeley Laboratory (1991)Google Scholar
  86. 86.
    Weinhold, F.: Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. Theochem-J. Mol. Struct. 398, 181–197 (1997)CrossRefGoogle Scholar
  87. 87.
    Weinhold, F.: Quantum cluster equilibrium theory of liquids: general theory and computer implementation. J. Chem. Phys. 109(2), 367–372 (1998)ADSCrossRefGoogle Scholar
  88. 88.
    Weinhold, F.: Quantum cluster equilibrium theory of liquids: illustrative application to water. J. Chem. Phys. 109(2), 373–384 (1998)ADSCrossRefGoogle Scholar
  89. 89.
    Weinhold, F.: Resonance character of hydrogenbonded species. In: Baldwin, R.L., Baker, D. (eds.) Peptide Solvation and HBonds, Volume 72 of Advances in Protein Chemistry, pp. 121–155. Academic Press (2005). doi: 10.1016/S0065-3233(05)72005-2. http://www.sciencedirect.com/science/article/pii/S0065323305720052
  90. 90.
    Weinhold, F.: Classical and Geometrical Theory of Chemical and Phase Thermodynamics, Chap. 13.3.4. Wiley (2009). http://books.google.de/books?id=Byi1W_lYLbgC
  91. 91.
    Weinhold, F., Klein, R.A.: What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing h-bonding interactions. Mol. Phys. 110(9–10), 565–579 (2012). doi: 10.1080/00268976.2012.661478. http://www.tandfonline.com/doi/abs/10.1080/00268976.2012.661478
  92. 92.
    Weinhold, F., Landis, C.R.: Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Chap. 5. Cambridge University Press (2005). http://books.google.de/books?id=6153Kt2ikggC
  93. 93.
    Wendt, M.A., Meiler, J., Weinhold, F., Farrar, T.C.: Solvent and concentration dependence of the hydroxyl chemical shift of methanol. Mol. Phys. 93(1), 145–152 (1998). doi: 10.1080/002689798169537. http://www.tandfonline.com/doi/abs/10.1080/002689798169537
  94. 94.
    Wendt, M.A., Weinhold, F., Farrar, T.C.: Critical test of quantum cluster equilibrium theory: formic acid at B3LYP/6-31+G* hybrid density functional level. J. Chem. Phys. 109(14), 5945–5947 (1998)ADSCrossRefGoogle Scholar
  95. 95.
    Zumdahl, S.S., DeCoste, D.J.: Chemical Principles, p. 779. Textbooks Available with Cengage YouBook Series. Cengage Learning, 6th edn. (2009). http://books.google.de/books?id=hsuV9JTGaP8C

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Barbara Kirchner
    • 1
  • Frank Weinhold
    • 2
  • Joachim Friedrich
    • 3
  • Eva Perlt
    • 4
  • Sebastian B. C. Lehmann
    • 4
  1. 1.Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical ChemistryUniversity of BonnBonnGermany
  2. 2.Department of ChemistryUniversity of WisconsinMadisonUSA
  3. 3.Fakultät für Naturwissenschaften, Institute für ChemieTechnische Universität ChemnitzChemnitzGermany
  4. 4.Wilhelm-Ostwald-Institute for Physical and Theoretical ChemistryUniversity of LeipzigLeipzigGermany

Personalised recommendations