Mathematical Perspective on Quantum Monte Carlo Methods

Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

Quantum Monte Carlo (QMC) methods aim at solving the \(N\)-body quantum problem by means of stochastic algorithms. This chapter provides a pedagogical introduction to the mathematical aspects of the most commonly used QMC methods in electronic structure calculation, namely the variational Monte Carlo (VMC) and the diffusion Monte Carlo (DMC) methods. VMC methods allow one to compute expectation values of the form \(\frac{\langle \psi | \hat{O} |\psi \rangle }{\langle \psi |\psi \rangle }\) for a given \(N\)-body wavefunction \(\psi \), and a given observable \(\hat{O}\), by means of stochastic sampling algorithms. In particular, VMC methods can be used to compute the energy of \(\psi \), which reads \(\frac{\langle \psi | H_N |\psi \rangle }{\langle \psi |\psi \rangle }\), where \(H_N\) is the \(N\)-body quantum Hamiltonian of the system. Diffusion Monte Carlo methods consist in rewriting the exact ground state energy of the system, that is the lowest eigenvalue of the Hamiltonian \(H_N\), as the long-time limit of the expectation value of some stochastic process, and in simulating this stochastic process by particle methods.

Notes

Acknowledgments

The author is grateful to V. Ehrlacher, F. Legoll, T. Lelièvre, M. Rousset, G. Stoltz and the anonymous referee for useful comments and suggestions.

References

  1. 1.
    Assaraf, R., Caffarel, M.: Zero-variance zero-bias principle for observables in Quantum Monte Carlo: application to forces. J. Chem. Phys. 119, 10536–10552 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Assaraf, R., Caffarel, M., Khelif, A.: Diffusion Monte Carlo with a fixed number of walkers. Phys. Rev. E 61, 4566–4575 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Bressanini, D., Reynolds, P.J.: Between classical and quantum Monte Carlo methods: "Variational" QMC. In: Advances in Chemical Physics, vol. 105. Wiley, New York (1999)Google Scholar
  4. 4.
    Bressanini, D., Reynolds, P.J.: Spatial-partitioning-based acceleration for Variational Monte Carlo. J. Chem. Phys. 111, 6180–6189 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Caffarel, M., Claverie, P.: Development of a pure diffusion Quantum Monte Carlo method using a full generalized Feynman-Kac formula. I. Formalism. J. Chem. Phys. 88, 1088–1109 (1988)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cancès, E., Jourdain, B., Lelièvre, T.: Quantum Monte Carlo simulation of fermions. A mathematical analysis of the fixed-node approximation. M3AS 16, 1403–1440 (2006)Google Scholar
  7. 7.
    Ceperley, D.M.: Fermion nodes. J. Stat. Phys. 63, 1237–1267 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    Del Moral, P.: Feynman-Kac formulae. Genealogical and interacting particle approximations. Springer, New York (2004)CrossRefMATHGoogle Scholar
  9. 9.
    El Makrini, M., Jourdain, B., Lelièvre, T.: Diffusion Monte Carlo method: numerical analysis in a simple case. ESAIM: M2AN 41, 189–213 (2007)Google Scholar
  10. 10.
    Grossman, G.C.: Benchmark quantum Monte Carlo calculations. J. Chem. Phys. 117, 1434–1440 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Hastings, W.K.: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57, 97–109 (1970)CrossRefMATHGoogle Scholar
  12. 12.
    Helgaker, T., Jørgensen, P., Olsen, J.: Molecular Electronic-Structure Theory. Wiley, Chichester (2000)Google Scholar
  13. 13.
    Lions, P.-L.: Remarks on Mathematical Modelling in Quantum Chemistry. Computational Methods in Applied Sciences. Wiley, New York (1996)Google Scholar
  14. 14.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.M., Teller, E.J.: J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  15. 15.
    Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, New York (1993)CrossRefMATHGoogle Scholar
  16. 16.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics—IV: Analysis of Operators. Academic Press, New York (1978)MATHGoogle Scholar
  17. 17.
    Rousset, M.: On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes. ESAIM: M2AN 44, 977–995 (2010)Google Scholar
  18. 18.
    Roux, R.: Etude probabiliste de systèmes de particules en interaction: applications à la simulation moléculaire. PhD thesis. Université Paris Est (2010)Google Scholar
  19. 19.
    Scemama, A., Lelièvre, T., Stoltz, G., Cancès, E., Caffarel, M.: An efficient sampling algorithm for Variational Monte Carlo. J. Chem. Phys. 125, 114105 (2006)Google Scholar
  20. 20.
    Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Classics in Mathematics, vol. 233. Springer, Berlin (2006)Google Scholar
  21. 21.
    Sun, Z., Soto, M.M., Lester Jr, W.A.: Characteristics of electron movement in Variational Monte Carlo simulations. J. Chem. Phys. 100, 1278–1289 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    Toulouse, J., Umrigar, C.J.: Optimization of quantum Monte Carlo wave functions by energy minimization. J. Chem. Phys. 126, 084102 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Umrigar, C.J.: Accelerated metropolis method. Phys. Rev. Lett. 71, 408–411 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    Umrigar, C.J., Filippi, C.: Energy and variance optimization of many-body wave functions. Phys. Rev. Lett. 94, 150201 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Umrigar, C.J., Toulouse, J., Filippi, C., Sorella, S., Hennig, R.G.: Alleviation of the fermion-sign problem by pptimization of many-body wave functions. Phys. Rev. Lett. 98, 110201 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Zhislin, G.M.: Discussion of the spectrum of Schrödinger operators for systems of many particles (in Russian). Trudy Moskovskogo matematiceskogo obscestva 9, 81–120 (1960)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Université Paris EstCERMICS, Ecole des Ponts and INRIAMarne-la-ValléeFrance

Personalised recommendations