# Mathematical Perspective on Quantum Monte Carlo Methods

• Eric Cancès
Chapter
Part of the Mathematical Physics Studies book series (MPST)

## Abstract

Quantum Monte Carlo (QMC) methods aim at solving the $$N$$-body quantum problem by means of stochastic algorithms. This chapter provides a pedagogical introduction to the mathematical aspects of the most commonly used QMC methods in electronic structure calculation, namely the variational Monte Carlo (VMC) and the diffusion Monte Carlo (DMC) methods. VMC methods allow one to compute expectation values of the form $$\frac{\langle \psi | \hat{O} |\psi \rangle }{\langle \psi |\psi \rangle }$$ for a given $$N$$-body wavefunction $$\psi$$, and a given observable $$\hat{O}$$, by means of stochastic sampling algorithms. In particular, VMC methods can be used to compute the energy of $$\psi$$, which reads $$\frac{\langle \psi | H_N |\psi \rangle }{\langle \psi |\psi \rangle }$$, where $$H_N$$ is the $$N$$-body quantum Hamiltonian of the system. Diffusion Monte Carlo methods consist in rewriting the exact ground state energy of the system, that is the lowest eigenvalue of the Hamiltonian $$H_N$$, as the long-time limit of the expectation value of some stochastic process, and in simulating this stochastic process by particle methods.

## Notes

### Acknowledgments

The author is grateful to V. Ehrlacher, F. Legoll, T. Lelièvre, M. Rousset, G. Stoltz and the anonymous referee for useful comments and suggestions.

## References

1. 1.
Assaraf, R., Caffarel, M.: Zero-variance zero-bias principle for observables in Quantum Monte Carlo: application to forces. J. Chem. Phys. 119, 10536–10552 (2003)
2. 2.
Assaraf, R., Caffarel, M., Khelif, A.: Diffusion Monte Carlo with a fixed number of walkers. Phys. Rev. E 61, 4566–4575 (2000)
3. 3.
Bressanini, D., Reynolds, P.J.: Between classical and quantum Monte Carlo methods: "Variational" QMC. In: Advances in Chemical Physics, vol. 105. Wiley, New York (1999)Google Scholar
4. 4.
Bressanini, D., Reynolds, P.J.: Spatial-partitioning-based acceleration for Variational Monte Carlo. J. Chem. Phys. 111, 6180–6189 (1999)
5. 5.
Caffarel, M., Claverie, P.: Development of a pure diffusion Quantum Monte Carlo method using a full generalized Feynman-Kac formula. I. Formalism. J. Chem. Phys. 88, 1088–1109 (1988)
6. 6.
Cancès, E., Jourdain, B., Lelièvre, T.: Quantum Monte Carlo simulation of fermions. A mathematical analysis of the fixed-node approximation. M3AS 16, 1403–1440 (2006)Google Scholar
7. 7.
Ceperley, D.M.: Fermion nodes. J. Stat. Phys. 63, 1237–1267 (1991)
8. 8.
Del Moral, P.: Feynman-Kac formulae. Genealogical and interacting particle approximations. Springer, New York (2004)
9. 9.
El Makrini, M., Jourdain, B., Lelièvre, T.: Diffusion Monte Carlo method: numerical analysis in a simple case. ESAIM: M2AN 41, 189–213 (2007)Google Scholar
10. 10.
Grossman, G.C.: Benchmark quantum Monte Carlo calculations. J. Chem. Phys. 117, 1434–1440 (2002)
11. 11.
Hastings, W.K.: Monte Carlo sampling methods using Markov Chains and their applications. Biometrika 57, 97–109 (1970)
12. 12.
Helgaker, T., Jørgensen, P., Olsen, J.: Molecular Electronic-Structure Theory. Wiley, Chichester (2000)Google Scholar
13. 13.
Lions, P.-L.: Remarks on Mathematical Modelling in Quantum Chemistry. Computational Methods in Applied Sciences. Wiley, New York (1996)Google Scholar
14. 14.
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.M., Teller, E.J.: J. Chem. Phys. 21, 1087 (1953)
15. 15.
Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, New York (1993)
16. 16.
Reed, M., Simon, B.: Methods of Modern Mathematical Physics—IV: Analysis of Operators. Academic Press, New York (1978)
17. 17.
Rousset, M.: On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes. ESAIM: M2AN 44, 977–995 (2010)Google Scholar
18. 18.
Roux, R.: Etude probabiliste de systèmes de particules en interaction: applications à la simulation moléculaire. PhD thesis. Université Paris Est (2010)Google Scholar
19. 19.
Scemama, A., Lelièvre, T., Stoltz, G., Cancès, E., Caffarel, M.: An efficient sampling algorithm for Variational Monte Carlo. J. Chem. Phys. 125, 114105 (2006)Google Scholar
20. 20.
Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Classics in Mathematics, vol. 233. Springer, Berlin (2006)Google Scholar
21. 21.
Sun, Z., Soto, M.M., Lester Jr, W.A.: Characteristics of electron movement in Variational Monte Carlo simulations. J. Chem. Phys. 100, 1278–1289 (1994)
22. 22.
Toulouse, J., Umrigar, C.J.: Optimization of quantum Monte Carlo wave functions by energy minimization. J. Chem. Phys. 126, 084102 (2007)
23. 23.
Umrigar, C.J.: Accelerated metropolis method. Phys. Rev. Lett. 71, 408–411 (1993)
24. 24.
Umrigar, C.J., Filippi, C.: Energy and variance optimization of many-body wave functions. Phys. Rev. Lett. 94, 150201 (2005)
25. 25.
Umrigar, C.J., Toulouse, J., Filippi, C., Sorella, S., Hennig, R.G.: Alleviation of the fermion-sign problem by pptimization of many-body wave functions. Phys. Rev. Lett. 98, 110201 (2007)
26. 26.
Zhislin, G.M.: Discussion of the spectrum of Schrödinger operators for systems of many particles (in Russian). Trudy Moskovskogo matematiceskogo obscestva 9, 81–120 (1960)