Mathematical Aspects of Density Functionals and Density Matrix Functionals in Quantum Chemistry

  • Volker Bach
Part of the Mathematical Physics Studies book series (MPST)


An overview on mathematical rigorously proven results on the ground state energy and the ground state of atoms and molecules is given. Three different approximations for the exchange correlations—the Hartree–Fock approximation, the local density approximation, and the Müller approximation—are defined and discussed. The G-, P-, Q-Conditions and also the \(T_1\)- and \(T_2\)-Conditons deriving from \(N\)-representability are introduced and used to derive lower bounds on the ground state energy.


  1. 1.
    Bach, V.: Ionization energies of bosonic coulomb systems. Lett. Math. Phys. 21, 139–149 (1991)ADSCrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bach, V.: Error bound for the Hartree–Fock energy of atoms and molecules. Commun. Math. Phys. 147, 527–548 (1992)Google Scholar
  3. 3.
    Bach, V.: Accuracy of mean field approximations for atoms and molecules. Commun. Math. Phys. 155, 295–310 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bach, V.: Mathematical density and density matrix functional theory (DFT and DMFT). In: Siedentop, H. (ed.) Complex Quantum Systems—Analysis of Large Coulomb Systems. Lecture Notes Series. Institute for Mathematical Sciences. World Scientific, Singapore (2013)Google Scholar
  5. 5.
    Bach, V., Knörr, H.K., Menge, E.: Fermion correlation inequalites derived from g- and p-conditions. Doc. Math. 17, 449–470 (2012)Google Scholar
  6. 6.
    Bach, V., Lieb, E.H., Loss, M., Solovej, J.P.: There are no unfilled shells in Hartree–Fock theory. Phys. Rev. Lett. 72(19), 2981–2983 (1994)Google Scholar
  7. 7.
    Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–90 (1994)Google Scholar
  8. 8.
    Benguria, R., Gallego, P., Tusek, M.: Indirect Coulomb energy for two-dimensional atoms. J. Math. Phys. 53, 095213 (2012)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Benguria, R., Gallego, P., Tusek, M.: A new estimate on the two-dimensional indirect Coulomb energy. Ann. H. Poincaré 13, 1733–1744 (2012)CrossRefMATHGoogle Scholar
  10. 10.
    Benguria, R., Lieb, E.H.: Proof of the stability of highly negative ions in the absence of the Pauli principle. Phys. Rev. Lett. 50, 1771–1774 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    Cancès, E., Lewin, M., Stoltz, G.: The electronic ground state energy problem: a new reduced density matrix approach. J. Chem. Phys. 125, 064101–064106 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Chan, G.K.-L., Handy, N.C.: Optimized Lieb-Oxford bound for the exchange-correlation energy. Phys. Rev. A 59, 3075–3077 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Coleman, A.J.: Structure of fermion density matrices. Rev. Mod. Phys. 35(3), 668–689 (1963)ADSCrossRefGoogle Scholar
  14. 14.
    Dirac, P.A.M.: Note on exchange phenomena in the Thomas-Fermi atom. Proc. Cambridge Philos. Soc. 26, 376–385 (1931)ADSCrossRefGoogle Scholar
  15. 15.
    Erdahl, R.M.: Representability. Int. J. Quant. Chem. 13, 697–718 (1978)CrossRefGoogle Scholar
  16. 16.
    Fefferman, C., de la Llave, R.: Relativistic stability of matter—I. Rev. Matematica Iberoamericana 2(1—-2), 119–161 (1986)CrossRefGoogle Scholar
  17. 17.
    R. Frank, E.H. Lieb, R. Seiringer, and H. Siedentop. Müller’s exchange-correlation energy in density-matrix-functional theory. Phys. Rev. A, p 052517, 2007. (see arXiv:0705.1587 [cond-mat.str-el] for a revised version)
  18. 18.
    Garrod, C., Percus, J.K.: Reduction of the N-particle variational problem. J. Math. Phys. 5(12), 1756–1776 (1964)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Graf, G.M., Solovej, J.P.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6a, 977–997 (1994)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    Lieb, E.H., Oxford, S.: An improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1981)CrossRefGoogle Scholar
  22. 22.
    Löwdin, P.-O.: Quantum theory of many-particle systems i. physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97(6), 1474–1489 (1955)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Mazziotti, D.: Variational two-electron reduced-density-matrix theory. In: Mazziotti, D. (ed.) Reduced-Density-Matrix Mechanics, vol 134. Advances in Chemical Physics, chap 3, pp 21–59. Wiley-Interscience, (2007)Google Scholar
  24. 24.
    Müller, A.M.K.: Explicit approximate relation between reduced two- and one-particle density matrices. Phys. Lett. A 105(9), 446–452 (1984)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Ruskai, M.B.: Limits on stability of positive molecular ions. Lett. Math. Phys. 18, 121–132 (1989)ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Ruskai, M.B.: Absence of discrete spectrum in highly negative ions II. Extension to Fermions. Commun. Math. Phys. 85, 325–327 (1982)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    Seco, L., Sigal, I.M., Solovej, J.P.: Bounds on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Sigal, I.M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)ADSCrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Sigal, I.M.: How many electrons can a nucleus bind? Ann. Phys. 157, 307–320 (1984)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Solovej, J.P.: Proof of the ionization conjecture in a reduced Hartree–Fock model. Invent. math. 104, 291–311 (1991)Google Scholar
  31. 31.
    Solovej, J.P.: The ionization conjecture in Hartree–Fock theory. Ann. Math. 158, 509–576 (2003)Google Scholar
  32. 32.
    Zhao, Z., Braams, B.J., Fukuda, M., Overton, M.L., Percus, J.K.: The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions. J. Chem. Phys. 120, 2095–2104 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut fuer Analysis und Algebra, Carl-Friedrich-Gauss-FakultaetTechnische Universitaet BraunschweigBraunschweigGermany

Personalised recommendations