Skip to main content

The Quantum Energy Agrees with the Müller Energy up to Third Order

  • Chapter
  • First Online:
Many-Electron Approaches in Physics, Chemistry and Mathematics

Part of the book series: Mathematical Physics Studies ((MPST))

Abstract

We show that the ground state energy \(E_\mathrm {M}(Z)\) of the Müller functional of (neutral) atoms of atomic number \(Z\) equals to the quantum mechanical ground state energy \(E_\mathrm {S}(Z)\) up order \(o(Z^{5/3})\), i.e., \( E_\mathrm {M}(Z)= E_\mathrm {S}(Z)+ o(Z^{5/3}). \)

©Heinz Siedentop. Based on a translation of J. Phys. A: Math. Theor. 42, 085201 (2009), doi:10.1088/1751-8113/42/8/085201.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here and in the following \(\mathrm {C}\) denote a generic constant.

  2. 2.

    Note the operator \(P\) introduced this way is no projection.

References

  1. Bach, V.: Error bound for the Hartree–Fock energy of atoms and molecules. Comm. Math. Phys. 147, 527–548 (1992)

    Google Scholar 

  2. Bach, V.: Accuracy of mean field approximations for atoms and molecules. Comm. Math. Phys. 155, 295–310 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Cioslowski, J., Pernal, K.: Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas. J. Chem. Phys. 111(8), 3396–3400 (1999)

    Article  ADS  Google Scholar 

  4. Fefferman, C., Seco, L.: Eigenfunctions and eigenvalues of ordinary differential operators. Adv. Math. 95(2), 145–305 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fefferman, C., Seco, L.: The density of a one-dimensional potential. Adv. Math. 107(2), 187–364 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fefferman, C., Seco, L.: The eigenvalue sum of a one-dimensional potential. Adv. Math. 108(2), 263–335 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fefferman, C., Seco, L.: On the Dirac and Schwinger corrections to the ground-state energy of an atom. Adv. Math. 107(1), 1–188 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fefferman, C., Seco, L.: The density in a three-dimensional radial potential. Adv. Math. 111(1), 88–161 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fefferman, C.L., Seco, L.A.: An upper bound for the number of electrons in a large ion. Proc. Nat. Acad. Sci. USA 86, 3464–3465 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fefferman, C.L., Seco, L.A.: On the energy of a large atom. Bull. AMS 23(2), 525–530 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fefferman, C.L., Seco, L.A.: Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential. Rev. Math. Iberoamericana 9(3), 409–551 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Frank, R.L., Lieb, E.H., Seiringer, R., Siedentop, H.: Müller’s exchange-correlation energy in density-matrix-functional theory. Phys. Rev. A 76(5), 052517 (2007)

    Article  ADS  Google Scholar 

  13. Frank, R.L., Lieb, E.H., Seiringer, R., Siedentop, H.: Müller’s exchange-correlation energy in density-matrix-functional theory. arXiv:0705.1587v3 (2009)

  14. Friesecke, G.: On the infinitude of non-zero eigenvalues of the single-electron density matrix for atoms and molecules. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2029), 47–52 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Gilbert, T.L.: Hohenberg-Kohn theorem for nonlocal external potentials. Phys. Rev. B 12(6), 2111–2120 (1975)

    Article  ADS  Google Scholar 

  16. Graf, G.M., Solovej, JP.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6(5A), 977–997 (1994) (Special issue dedicated to E.H. Lieb)

    Google Scholar 

  17. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 2(136), B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  18. Lee, D., Burke, K., Constantin, L.A., Perdew, J.P.: Exact condition on the Kohn–Sham kinetic energy, and modern parametrization of the Thomas-Fermi density. ArXiv.org http://arxiv.org/abs/0810.1992v1 (Oct 2008)

  19. Lewin, M.: Quelques modèles non linéaires en mécanique quantique. PhD thesis, Paris Dauphine. http://tel.archives-ouvertes.fr/documents/archives0/00/00/63/06/index.html (2004)

  20. Lieb, E.H.: A lower bound for Coulomb energies. Phys. Lett. 70A, 444–446 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lieb, E.H..: Erratum: Variational principle for many-fermion systems [Phys. Rev. Lett. 46(7), 457–459 (1981), MR 81m:81083]. Phys. Rev. Lett. 47(1), 69 (1981)

    Google Scholar 

  22. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lieb, E.H.: Variational principle for many-fermion systems. Phys. Rev. Lett. 46(7), 457–459 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lieb, E.H., Oxford, S.: Improved lower bound on the indirect Coulomb energy. Intern. J. Quantum Chem. 19, 427–439 (1981)

    Article  Google Scholar 

  25. Lieb, E.H., Simon, B.: On solutions of the Hartree–Fock problem for atoms and molecules. J. Chem. Phys. 61(2), 735–736 (1974)

    Google Scholar 

  26. Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Comm. Math. Phys. 53(3), 185–194 (1977)

    Google Scholar 

  27. Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  28. Müller, A.M.K.: Explicit approximate relation between reduced two- and one-particle density matrices. Phys. Lett. A 105(9), 446–452 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  29. Schwinger, J.: Thomas-Fermi model: the second correction. Phys. Rev. A 24(5), 2353–2361 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. Sharma, S., Dewhurst, J.K., Lathiotakis, N.N., Gross, E.K.U.: Reduced density matrix functional for many-electron systems. Phys. Rev. B (Condens. Matter Mater. Phys.) 78(20), 201103 (2008)

    Article  ADS  Google Scholar 

  31. Siedentop, H.: Das asymptotische Verhalten der Grundzustandsenergie des Müllerfunktionals für schwere Atome. J. Phys. A 42(8), 085201, 9 (2009)

    Google Scholar 

  32. Thirring, W.: A lower bound with the best possible constant for Coulomb Hamiltonians. Comm. Math. Phys. 79, 1–7 (1981)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

Partial support by the SFB-TR 12 of the DFG is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Siedentop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siedentop, H. (2014). The Quantum Energy Agrees with the Müller Energy up to Third Order. In: Bach, V., Delle Site, L. (eds) Many-Electron Approaches in Physics, Chemistry and Mathematics. Mathematical Physics Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-06379-9_11

Download citation

Publish with us

Policies and ethics