The Quantum Energy Agrees with the Müller Energy up to Third Order

Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

We show that the ground state energy \(E_\mathrm {M}(Z)\) of the Müller functional of (neutral) atoms of atomic number \(Z\) equals to the quantum mechanical ground state energy \(E_\mathrm {S}(Z)\) up order \(o(Z^{5/3})\), i.e., \( E_\mathrm {M}(Z)= E_\mathrm {S}(Z)+ o(Z^{5/3}). \)

Keywords

One-particle density matrix Exchange-correlation Reduced density matrix functional theory Müller functional Asymptotics of the ground state energy of atoms 

Notes

Acknowledgments

Partial support by the SFB-TR 12 of the DFG is gratefully acknowledged.

References

  1. 1.
    Bach, V.: Error bound for the Hartree–Fock energy of atoms and molecules. Comm. Math. Phys. 147, 527–548 (1992)Google Scholar
  2. 2.
    Bach, V.: Accuracy of mean field approximations for atoms and molecules. Comm. Math. Phys. 155, 295–310 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cioslowski, J., Pernal, K.: Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas. J. Chem. Phys. 111(8), 3396–3400 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Fefferman, C., Seco, L.: Eigenfunctions and eigenvalues of ordinary differential operators. Adv. Math. 95(2), 145–305 (1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Fefferman, C., Seco, L.: The density of a one-dimensional potential. Adv. Math. 107(2), 187–364 (1994)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Fefferman, C., Seco, L.: The eigenvalue sum of a one-dimensional potential. Adv. Math. 108(2), 263–335 (1994)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Fefferman, C., Seco, L.: On the Dirac and Schwinger corrections to the ground-state energy of an atom. Adv. Math. 107(1), 1–188 (1994)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fefferman, C., Seco, L.: The density in a three-dimensional radial potential. Adv. Math. 111(1), 88–161 (1995)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Fefferman, C.L., Seco, L.A.: An upper bound for the number of electrons in a large ion. Proc. Nat. Acad. Sci. USA 86, 3464–3465 (1989)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fefferman, C.L., Seco, L.A.: On the energy of a large atom. Bull. AMS 23(2), 525–530 (1990)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Fefferman, C.L., Seco, L.A.: Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential. Rev. Math. Iberoamericana 9(3), 409–551 (1993)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Frank, R.L., Lieb, E.H., Seiringer, R., Siedentop, H.: Müller’s exchange-correlation energy in density-matrix-functional theory. Phys. Rev. A 76(5), 052517 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Frank, R.L., Lieb, E.H., Seiringer, R., Siedentop, H.: Müller’s exchange-correlation energy in density-matrix-functional theory. arXiv:0705.1587v3 (2009)
  14. 14.
    Friesecke, G.: On the infinitude of non-zero eigenvalues of the single-electron density matrix for atoms and molecules. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2029), 47–52 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Gilbert, T.L.: Hohenberg-Kohn theorem for nonlocal external potentials. Phys. Rev. B 12(6), 2111–2120 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    Graf, G.M., Solovej, JP.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6(5A), 977–997 (1994) (Special issue dedicated to E.H. Lieb)Google Scholar
  17. 17.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 2(136), B864–B871 (1964)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lee, D., Burke, K., Constantin, L.A., Perdew, J.P.: Exact condition on the Kohn–Sham kinetic energy, and modern parametrization of the Thomas-Fermi density. ArXiv.org http://arxiv.org/abs/0810.1992v1 (Oct 2008)
  19. 19.
    Lewin, M.: Quelques modèles non linéaires en mécanique quantique. PhD thesis, Paris Dauphine. http://tel.archives-ouvertes.fr/documents/archives0/00/00/63/06/index.html (2004)
  20. 20.
    Lieb, E.H.: A lower bound for Coulomb energies. Phys. Lett. 70A, 444–446 (1979)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lieb, E.H..: Erratum: Variational principle for many-fermion systems [Phys. Rev. Lett. 46(7), 457–459 (1981), MR 81m:81083]. Phys. Rev. Lett. 47(1), 69 (1981)Google Scholar
  22. 22.
    Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lieb, E.H.: Variational principle for many-fermion systems. Phys. Rev. Lett. 46(7), 457–459 (1981)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lieb, E.H., Oxford, S.: Improved lower bound on the indirect Coulomb energy. Intern. J. Quantum Chem. 19, 427–439 (1981)CrossRefGoogle Scholar
  25. 25.
    Lieb, E.H., Simon, B.: On solutions of the Hartree–Fock problem for atoms and molecules. J. Chem. Phys. 61(2), 735–736 (1974)Google Scholar
  26. 26.
    Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Comm. Math. Phys. 53(3), 185–194 (1977)Google Scholar
  27. 27.
    Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Müller, A.M.K.: Explicit approximate relation between reduced two- and one-particle density matrices. Phys. Lett. A 105(9), 446–452 (1984)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Schwinger, J.: Thomas-Fermi model: the second correction. Phys. Rev. A 24(5), 2353–2361 (1981)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sharma, S., Dewhurst, J.K., Lathiotakis, N.N., Gross, E.K.U.: Reduced density matrix functional for many-electron systems. Phys. Rev. B (Condens. Matter Mater. Phys.) 78(20), 201103 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Siedentop, H.: Das asymptotische Verhalten der Grundzustandsenergie des Müllerfunktionals für schwere Atome. J. Phys. A 42(8), 085201, 9 (2009)Google Scholar
  32. 32.
    Thirring, W.: A lower bound with the best possible constant for Coulomb Hamiltonians. Comm. Math. Phys. 79, 1–7 (1981)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mathematisches InstitutLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations