The Quantum Energy Agrees with the Müller Energy up to Third Order

Part of the Mathematical Physics Studies book series (MPST)


We show that the ground state energy \(E_\mathrm {M}(Z)\) of the Müller functional of (neutral) atoms of atomic number \(Z\) equals to the quantum mechanical ground state energy \(E_\mathrm {S}(Z)\) up order \(o(Z^{5/3})\), i.e., \( E_\mathrm {M}(Z)= E_\mathrm {S}(Z)+ o(Z^{5/3}). \)


One-particle density matrix Exchange-correlation Reduced density matrix functional theory Müller functional Asymptotics of the ground state energy of atoms 



Partial support by the SFB-TR 12 of the DFG is gratefully acknowledged.


  1. 1.
    Bach, V.: Error bound for the Hartree–Fock energy of atoms and molecules. Comm. Math. Phys. 147, 527–548 (1992)Google Scholar
  2. 2.
    Bach, V.: Accuracy of mean field approximations for atoms and molecules. Comm. Math. Phys. 155, 295–310 (1993)ADSCrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cioslowski, J., Pernal, K.: Constraints upon natural spin orbital functionals imposed by properties of a homogeneous electron gas. J. Chem. Phys. 111(8), 3396–3400 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Fefferman, C., Seco, L.: Eigenfunctions and eigenvalues of ordinary differential operators. Adv. Math. 95(2), 145–305 (1992)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Fefferman, C., Seco, L.: The density of a one-dimensional potential. Adv. Math. 107(2), 187–364 (1994)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Fefferman, C., Seco, L.: The eigenvalue sum of a one-dimensional potential. Adv. Math. 108(2), 263–335 (1994)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Fefferman, C., Seco, L.: On the Dirac and Schwinger corrections to the ground-state energy of an atom. Adv. Math. 107(1), 1–188 (1994)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Fefferman, C., Seco, L.: The density in a three-dimensional radial potential. Adv. Math. 111(1), 88–161 (1995)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Fefferman, C.L., Seco, L.A.: An upper bound for the number of electrons in a large ion. Proc. Nat. Acad. Sci. USA 86, 3464–3465 (1989)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fefferman, C.L., Seco, L.A.: On the energy of a large atom. Bull. AMS 23(2), 525–530 (1990)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Fefferman, C.L., Seco, L.A.: Aperiodicity of the Hamiltonian flow in the Thomas-Fermi potential. Rev. Math. Iberoamericana 9(3), 409–551 (1993)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Frank, R.L., Lieb, E.H., Seiringer, R., Siedentop, H.: Müller’s exchange-correlation energy in density-matrix-functional theory. Phys. Rev. A 76(5), 052517 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Frank, R.L., Lieb, E.H., Seiringer, R., Siedentop, H.: Müller’s exchange-correlation energy in density-matrix-functional theory. arXiv:0705.1587v3 (2009)
  14. 14.
    Friesecke, G.: On the infinitude of non-zero eigenvalues of the single-electron density matrix for atoms and molecules. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459(2029), 47–52 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Gilbert, T.L.: Hohenberg-Kohn theorem for nonlocal external potentials. Phys. Rev. B 12(6), 2111–2120 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    Graf, G.M., Solovej, JP.: A correlation estimate with applications to quantum systems with Coulomb interactions. Rev. Math. Phys. 6(5A), 977–997 (1994) (Special issue dedicated to E.H. Lieb)Google Scholar
  17. 17.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 2(136), B864–B871 (1964)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lee, D., Burke, K., Constantin, L.A., Perdew, J.P.: Exact condition on the Kohn–Sham kinetic energy, and modern parametrization of the Thomas-Fermi density. (Oct 2008)
  19. 19.
    Lewin, M.: Quelques modèles non linéaires en mécanique quantique. PhD thesis, Paris Dauphine. (2004)
  20. 20.
    Lieb, E.H.: A lower bound for Coulomb energies. Phys. Lett. 70A, 444–446 (1979)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lieb, E.H..: Erratum: Variational principle for many-fermion systems [Phys. Rev. Lett. 46(7), 457–459 (1981), MR 81m:81083]. Phys. Rev. Lett. 47(1), 69 (1981)Google Scholar
  22. 22.
    Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53(4), 603–641 (1981)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lieb, E.H.: Variational principle for many-fermion systems. Phys. Rev. Lett. 46(7), 457–459 (1981)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Lieb, E.H., Oxford, S.: Improved lower bound on the indirect Coulomb energy. Intern. J. Quantum Chem. 19, 427–439 (1981)CrossRefGoogle Scholar
  25. 25.
    Lieb, E.H., Simon, B.: On solutions of the Hartree–Fock problem for atoms and molecules. J. Chem. Phys. 61(2), 735–736 (1974)Google Scholar
  26. 26.
    Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Comm. Math. Phys. 53(3), 185–194 (1977)Google Scholar
  27. 27.
    Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Müller, A.M.K.: Explicit approximate relation between reduced two- and one-particle density matrices. Phys. Lett. A 105(9), 446–452 (1984)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Schwinger, J.: Thomas-Fermi model: the second correction. Phys. Rev. A 24(5), 2353–2361 (1981)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    Sharma, S., Dewhurst, J.K., Lathiotakis, N.N., Gross, E.K.U.: Reduced density matrix functional for many-electron systems. Phys. Rev. B (Condens. Matter Mater. Phys.) 78(20), 201103 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Siedentop, H.: Das asymptotische Verhalten der Grundzustandsenergie des Müllerfunktionals für schwere Atome. J. Phys. A 42(8), 085201, 9 (2009)Google Scholar
  32. 32.
    Thirring, W.: A lower bound with the best possible constant for Coulomb Hamiltonians. Comm. Math. Phys. 79, 1–7 (1981)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mathematisches InstitutLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations