Skip to main content

Introduction and Scope of Part I

  • Chapter
  • First Online:
System Identification and Adaptive Control

Part of the book series: Advances in Industrial Control ((AIC))

  • 2611 Accesses

Abstract

In our world, there are two principal objectives in the scientific study of the environment: we want to understand (identification) and to control. These two goals are in continuous interaction with each other, since deeper understanding allows firmer control, while, on the other hand, systematic application of scientific theories inevitably generates new problems which require further investigation, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeli, H., & Jiang, X. (2006). Dynamic fuzzy wavelet neural network model for structural system identification. Journal of Structural Engineering, 132, 102–111.

    Article  Google Scholar 

  • Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., & Perez-Cisneros, M. A. (2010). Real-time discrete neural block control using sliding modes for electric induction motors. IEEE Transactions on Control Systems Technology, 18, 11–21.

    Article  Google Scholar 

  • Alanis, A. Y., Sanchez, E. N., Loukianov, A. G., & Perez-Cisneros, M. A. (2011). Real-time neural-state estimation. IEEE Transactions on Neural Networks, 22, 497–505.

    Article  Google Scholar 

  • Aseltine, J. A., Mancini, A. R., & Sartune, C. W. (1958). A survey of adaptive control systems. IEEE Transactions on Automatic Control, 3, 102–108.

    Article  Google Scholar 

  • Astrom, K. J. (1983). Theory and applications of adaptive control: a survey. Automatica, 19, 471–486.

    Google Scholar 

  • Baruch, I. S., Lopez, R. B., Guzman, J. L. O. & Flores, J. M. (2008). A fuzzy-neural multi-model for nonlinear systems identification and control. Fuzzy Sets and Systems, 159(20), 2650–2667.

    Google Scholar 

  • Belarbi, K., & Chemachema, M. (2007). Stable direct adaptive neural network controller with a fuzzy estimator of the control error for a class of perturbed nonlinear systems. IET Control Theory and Applications, 1, 1398–1404.

    Article  Google Scholar 

  • Boutalis, Y. S., Theodoridis, D. C., & Christodoulou, M. A. (2009). A new neuro fds definition for indirect adaptive control of unknown nonlinear systems using a method of parameter hopping. IEEE Transactions on Neural Networks, 20, 609–625.

    Article  Google Scholar 

  • Chai, Y., Jia, L., & Zhang, Z. (2009). Mamdani model based adaptive neural fuzzy inference system and its application. International Journal of Information and Mathematical Sciences, 5, 22–29.

    Google Scholar 

  • Chemachema, M., & Belarbi, K. (2007). Robust direct adaptive controller for a class of nonlinear systems based on neural networks and fuzzy logic system. International Journal on Artificial Intelligence Tools, 16, 553–560.

    Article  Google Scholar 

  • Chen, B. S., Lee, C. H., & Chang, Y. C. (1996). Tracking design of uncertain nonlinear siso systems: adaptive fuzzy approach. IEEE Transactions on Fuzzy Systems, 4, 32–43.

    Article  Google Scholar 

  • Chen, F. C., & Liu, C. C. (1994). Adaptively controlling nonlinear continuous-time systems using multilayer neural networks. IEEE Transactions on Automatic Control, 39, 1306–1310.

    Article  MATH  Google Scholar 

  • Cho, K. B., & Wang, B. H. (1996). Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction. Fuzzy Sets and Systems, 83, 325–339.

    Article  MathSciNet  Google Scholar 

  • Ciliz, M. (2007). Adaptive backstepping control using combined direct and indirect adaptation. Circuits, Systems and Signal Processing, 26, 911939.

    Article  MathSciNet  Google Scholar 

  • Cybenko, G. (1989). Approximation by superpositions of a sigmodial function. Mathematics of Control, Signals and Systerns, 2, 303–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Diao, Y., & Passino, K. M. (2002). Adaptive neural/fuzzy control for interpolated nonlinear systems. IEEE Transactions on Fuzzy Systems, 10, 583–595.

    Article  Google Scholar 

  • EL-Hawwary, M. & Elshafei, A. (2006). Robust adaptive fuzzy control of a two-link robot arm. International Journal of Robotics and Automation, 21, 266–272.

    Google Scholar 

  • Feng, G., & Chen, G. (2005). Adaptive control of discrete-time chaotic systems: a fuzzy control approach. Chaos, Solitons and Fractals, 23, 459467.

    Article  MathSciNet  Google Scholar 

  • Freitag, S., Graf, W., & Kaliske, M. (2011). Recurrent neural networks for fuzzy data. Integrated Computer-Aided Engineering, 18, 265–280.

    Google Scholar 

  • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2, 183–192.

    Article  Google Scholar 

  • Gao, Y., & Joo, M. (2003). Online adaptive fuzzy neural identification and control of a class of mimo nonlinear systems. IEEE Transactions on Fuzzy Systems, 11, 462–477.

    Article  Google Scholar 

  • Ge, S. S., Lee, T. H., & Harris, C. J. (1998). Adaptive neural network control of robotic manipulators. London: World Scientific.

    Book  Google Scholar 

  • Ge, S. S., Hang, C. C., & Zhang, T. (1999). Direct method for robust adaptive nonlinear control with guaranteed transient performance. Systems and Control Letters, 37, 275–284.

    Article  MATH  MathSciNet  Google Scholar 

  • Ge, S. S., Hang, C. C., Lee, T. H., & Zhang, T. (2001). Stable adaptive neural network control. Norwell, MA: Kluwer.

    Google Scholar 

  • Hojati, M., & Gazor, S. (2002). Hybrid adaptive fuzzy identification and control of nonlinear systems. IEEE Transactions on Fuzzy Systems, 10, 198–210.

    Article  Google Scholar 

  • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.

    Article  Google Scholar 

  • Ioannou, P., & Fidan, B. (2006). Adaptive control tutorial. SIAM, Advances in Design and Control Series.

    Google Scholar 

  • Ioannou, P. A., & Sun, J. (1996). Robust adaptive control. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Ioannou, P. A. & Tsakalis, K. S. (1986). A robust direct adaptive controller. IEEE Transactions on Automatic Control, AC-31(11), 10331043.

    Google Scholar 

  • Jang, J. S. R. (1993). Anfis: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23, 665–684.

    Article  Google Scholar 

  • Jou, I. C., Chang, C. J., & Chen, H. K. (1999). A hybrid neuro-fuzzy system for adaptive vehicle separation control. Journal of VLSI Signal Processing, 21, 15–29.

    Google Scholar 

  • Juang, C. F., & Lin, C. T. (1998). An on-line self-constructing neural fuzzy inference network and its applications. IEEE Transactions on Fuzzy Systems, 6, 12–32.

    Article  Google Scholar 

  • Kokotovic, P. V., & Arcak, M. (2001). Constructive nonlinear control: a historical perspective. Automatica, 37, 637–662.

    Article  MATH  MathSciNet  Google Scholar 

  • Kosko, B. (1992). Neural networks and fuzzy systems. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Kosko, B. (1997). Fuzzy engineering. Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Kosmatopoulos, E. B., & Christodoulou, M. A. (1994). Filtering, prediction, and learning properties of ece neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 24, 971–981.

    Article  Google Scholar 

  • Kosmatopoulos, E. B., & Christodoulou, M. A. (1996). Recurrent neural networks for approximation of fuzzy dynamical systems. International Journal of Intelligent Control and Systems, 1, 223–233.

    Article  MathSciNet  Google Scholar 

  • Kosmatopoulos, E. B., Polycarpou, M. M., Christodoulou, M. A., & Ioannou, P. A. (1995). High-order neural network structures for identification of dynamical systems. IEEE Transactions on Neural Networks, 6, 422–431.

    Article  Google Scholar 

  • Krstic, M., Kanellakopoulos, I., & Kokotovic, P. (1995). Nonlinear and adaptive control design. New York, NY: Wiley.

    Google Scholar 

  • Kukolj, D., & Levi, E. (2004). Identification of complex systems based on neural and takagi-sugeno fuzzy model. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34, 272–282.

    Article  Google Scholar 

  • Labiod, S., Boucherit, M. S., & Guerra, T. M. (2005). Adaptive fuzzy control of a class of mimo nonlinear systems. Fuzzy Sets and Systems, 151, 59–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Lee, C., & Teng, C. (2000). Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 8, 349–366.

    Article  Google Scholar 

  • Leu, Y., Wang, W., & Lee, T. (2005). Observer-based direct adaptive fuzzy-neural control for nonaffine nonlinear systems. IEEE Transactions on Neural Networks, 16, 853–861.

    Article  Google Scholar 

  • Leu, Y. G., Wang, W. Y., & Li, I. H. (2009). Rga-based on-line tuning of bmf fuzzy-neural networks for adaptive control of uncertain nonlinear systems. Neurocomputing, 72, 2636–2642.

    Article  Google Scholar 

  • Lewis, F., Jaganathan, S. & Yesildirek, A. (1999). Neural network control of robot manipulators and nonlinear systems. London: Taylor and Francis.

    Google Scholar 

  • Lewis, F. L., Yesildirek, A., & Liu, K. (1996). Multilayer neural net robot controller: Structure and stability proofs. IEEE Transactions on Neural Networks, 7, 1–12.

    Article  Google Scholar 

  • Li, R. P. & Mukaidono, M. (1995). A new approach to rule learning based on fusion of fuzzy logic and neural networks. IEICE Transactions on Fuzzy Systems, E78-d, 1509–1514.

    Google Scholar 

  • Lin, C. (1995). A neural fuzzy control system with structure and parameter learning. Fuzzy Sets and Systems, 70, 183–212.

    Article  MathSciNet  Google Scholar 

  • Lin, C. T. (1994). Neural fuzzy control systems with structure and parameter learning. Singapore: World Scientific.

    Google Scholar 

  • Lin, C. T., & Lee, C. S. G. (1996). Neural fuzzy systems: A neuro-fuzzy synergism to intelligent systems. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Lin, Y. H., & Cunningham, G. A. (1995). A new approach to fuzzy-neural system modelling. IEEE Transactions on Fuzzy Systems, 3, 190–197.

    Article  Google Scholar 

  • Lina, F. J., & Wai, R. J. (2003). Robust recurrent fuzzy neural network control for linear synchronous motor drive system. Neurocomputing, 50, 365–390.

    Article  Google Scholar 

  • Liu, Y., & Li, Y. (2006). Dynamic modeling and adaptive neural-fuzzy control for nonholonomic mobile manipulators moving on a slope. International Journal of Control, Automation, and Systems, 4, 1–7.

    Google Scholar 

  • Mamdani, E. (1976). Advances in the linguistic synthesis of fuzzy controllers. International Journal of Man-Machine Studies, 8, 669678.

    Article  Google Scholar 

  • Mastorocostas, P. A., & Theocharis, J. B. (2002). A recurrent fuzzy-neural model for dynamic system identification. IEEE Transactioba on SMC-Part B, 32, 176–190.

    Google Scholar 

  • McLain, R. B., Henson, M. A., & Pottmann, M. (1999). Direct adaptive control of partially known nonlinear systems. IEEE Transactions on Neural Networks, 10, 714–721.

    Article  Google Scholar 

  • Mitra, S., & Hayashi, Y. (2000). Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Transactions on Neural Networks, 11, 748–768.

    Article  Google Scholar 

  • Naredra, K. S., & Valavani, L. S. (1979). Direct and indirect model reference adaptive control. Automatica, 15, 653–664.

    Article  Google Scholar 

  • Nounou, H. N., & Passino, K. M. (2004). Stable auto-tuning of adaptive fuzzy/neural controllers for nonlinear discrete-time systems. IEEE Transactions on Fuzzy Systems, 12, 70–83.

    Article  Google Scholar 

  • Ordonez, R., Zumberge, J., Spooner, J. T., & Passino, K. M. (1997). Adaptive fuzzy control: experiments and comparative analyses. IEEE Transactions on Fuzzy Systems, 5, 167–188.

    Article  Google Scholar 

  • Ortega, R., & Yu, T. (1989). Robustness of adaptive controllers: a survey. Automatica, 25, 651–678.

    Article  MATH  Google Scholar 

  • Passino, K. & Yurkovich, S. (1998). Fuzzy control. Menlo Park: Addison Wesley Longman.

    Google Scholar 

  • Polycarpou, M. M. (1996). Stable adaptive neural control scheme for nonlinear systems. IEEE Transactions on Automatic Control, 41, 447–450.

    Article  MATH  MathSciNet  Google Scholar 

  • Poznyak, A. S., Yu, W., Sanchez, E. N., & Perez, J. P. (1999). Nonlinear adaptive trajectory tracking using dynamic neural networks. IEEE Transactions on Neural Networks, 10, 1402–1411.

    Article  Google Scholar 

  • Rovithakis, G. & Christodoulou, M. A. (2000). Adaptive control with recurrent high order neural networks (theory and industrial applications). Advances in Industrial Control. London: Springer London Limited.

    Google Scholar 

  • Rovithakis, G. A., & Christodoulou, M. A. (1994). Adaptive control of unknown plants using dynamical neural networks. IEEE Transactions on Systems, Man and Cybernetics, 24, 400–412.

    Article  MathSciNet  Google Scholar 

  • Rovithakis, G. A., & Christodoulou, M. A. (1995). Direct adaptive regulation of unknown nonlinear dynamical systems via dynamic neural networks. IEEE Transactions on Systems, Man and Cybernetics, 25, 1578–1594.

    Article  Google Scholar 

  • Rubio, J. J., & Yu, W. (2007). Nonlinear system identification with recurrent neural networks and dead-zone kalman filter algorithm. Neurocomputing, 70, 24602466.

    Google Scholar 

  • Sanner, R. M., & Slotine, J. E. (1992). Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 3, 837–863.

    Article  Google Scholar 

  • Sastry, S. S., & Bodson, M. (1989). Adaptive control: Stability, convergence, and robustness. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Sastry, S. S., & Isidori, A. (1989). Adaptive control of linearizable systems. IEEE Transactions on Automatic Control, 34, 1123–1131.

    Article  MATH  MathSciNet  Google Scholar 

  • Seker, H., Odetayo, M. O., Petrovic, D., & Naguib, R. N. G. (2003). A fuzzy logic based-method for prognostic decision making in breast and prostate cancers. IEEE Transactions on Information Technology in Biomedicine, 7, 114–122.

    Article  Google Scholar 

  • Sheikhzadeh, M., Trifkovic, M., & Rohani, S. (2008). Adaptive mimo neuro-fuzzy logic control of a seeded and an unseeded anti-solvent semi-batch crystallizer. Chemical Engineering Science, 63(1261), 1272.

    Google Scholar 

  • Spooner, J. T., & Passino, K. M. (1996). Stable adaptive control using fuzzy systems and neural networks. IEEE Transactions on Fuzzy Systems, 4, 339–359.

    Article  Google Scholar 

  • Subudhi, B., & Morris, A. S. (2003). Fuzzy and neuro-fuzzy approaches to control a flexible single-link manipulator. Systems and Control Engineering, 217, 387–399.

    Google Scholar 

  • Sugeno, M. (1985). Industrial applications of fuzzy control. Amsterdam: Elsevier.

    Google Scholar 

  • Sugeno, M., & Yasukawa, T. (1993). A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1, 7–31.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, 15, 116–132.

    Article  MATH  Google Scholar 

  • Theocharis, J. B. (2006). A high-order recurrent neuro-fuzzy system with internal dynamics: application to the adaptive noise cancellation. Fuzzy Sets and Systems, 157, 471–500.

    Article  MathSciNet  Google Scholar 

  • Theodoridis, D., Boutalis, Y. & Christodoulou, M. (2009a). A new neuro-fuzzy dynamical system definition based on high order neural network function approximators. In: European Control Conference ECC-09, Budapest, Hungary.

    Google Scholar 

  • Theodoridis, D., Boutalis, Y., & Christodoulou, M. (2010a). Indirect adaptive control of unknown multi variable nonlinear systems with parametric and dynamic uncertainties using a new neuro-fuzzy system description. International Journal of Neural Systems, 20, 129–148.

    Article  Google Scholar 

  • Theodoridis, D., Boutalis, Y., & Christodoulou, M. (2010b). A new neuro-fuzzy approach with robustness analysis for direct adaptive regulation of systems in brunovsky form. International Journal of Neural Systems, 20, 319–339.

    Article  Google Scholar 

  • Theodoridis, D., Boutalis, Y., & Christodoulou, M. (2011a). Neuro-fuzzy direct adaptive control of unknown nonlinear systems with analysis on the model order problem. Journal of Zhejiang University-SCIENCE C (Computers & Electronics), 12, 1–16.

    Article  Google Scholar 

  • Theodoridis, D., Boutalis, Y., & Christodoulou, M. (2011b). Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. Journal of Artificial Intelligence and Soft Computing Research, 1, 59–79.

    Google Scholar 

  • Theodoridis, D., Boutalis, Y. & Christodoulou, M. (2012). Dynamical recurrent neuro-fuzzy identification schemes employing switching parameter hopping. International Journal of Neural Systems, 22, 16.

    Google Scholar 

  • Theodoridis, D. C., Christodoulou, M. A., & Boutalis, Y. S. (2008). Indirect adaptive neuro—fuzzy control based on high order neural network function approximators. Proccedings of the 16th Mediterranean Conference on Control and Automation—MED08 (pp. 386–393). Corsica, France: Ajaccio.

    Google Scholar 

  • Theodoridis, D. C., Boutalis, Y. S. & Christodoulou, M. A. (2009b). Direct adaptive control of unknown nonlinear systems using a new neuro-fuzzy method together with a novel approach of parameter hopping. Kybernetica, 45, 349–386.

    Google Scholar 

  • Vieira, J., Dias, F. M., & Mota, A. (2004). Artificial neural networks and neuro-fuzzy systems for modelling and controlling real systems: a comparative study. Engineering Applications of Artificial Intelligence, 17, 265–273.

    Article  Google Scholar 

  • Wang, C., Liu, H., & Lin, T. (2002). Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems. IEEE Transactions on Fuzzy Systems, 10, 39–49.

    Article  Google Scholar 

  • Wang, J. S., & Lee, C. S. G. (2002). Self-adaptive neuro-fuzzy inference systems for classification applications. IEEE Transactions on Fuzzy Systems, 10, 790–802.

    Article  Google Scholar 

  • Wang, L. (1994). Adaptive fuzzy systems and control: Design and stability analysis. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Wang, L. X., & Mendel, J. M. (1992). Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Transactions on Neural Networks, 3, 807–814.

    Article  Google Scholar 

  • Wang, M., Chen, B., & Dai, S. L. (2007). Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems. Fuzzy Sets and Systems, 158, 2655–2670.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, W., Leu, Y., & Hsu, C. (2001). Robust adaptive fuzzy-neural control of nonlinear dynamical systems using generalized projection update law and variable structure controller. IEEE Transactions on SMC-Part B, 31, 140–147.

    Google Scholar 

  • Wu, S., & Er, M. J. (2000). Dynamic fuzzy neural networks a novel approach to function approximation. IEEE Transactions on SMC-Part B, 30, 358–364.

    Google Scholar 

  • Yang, Y. (2004). Direct robust adaptive fuzzy control (drafc) for uncertain nonlinear systems using small gain theorem. Fuzzy Sets and Systems, 151, 79–97.

    Article  Google Scholar 

  • Yesildirek, A., & Lewis, F. L. (1995). Feedback linearization using neural networks. Automatica, 31, 1659–1664.

    Article  MATH  MathSciNet  Google Scholar 

  • Yu, L. X., & Zhang, Y. Q. (2005). Evolutionary fuzzy neural networks for hybrid financial prediction. IEEE Transactions on Systems, Man, and Cybernetics Part C, 35, 244–249.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information Control, 8, 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1968). Fuzzy algorithm. Information Control, 12, 94–102.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1971). Similarity relations and fuzzy orderings. Information Science, 3, 177–200.

    Article  MATH  MathSciNet  Google Scholar 

  • Zadeh, L. A. (1975). The consept of a linguistic variable and its application to approximate reasoning: i, ii, iii. Information Sciences, 8, 199–251.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, J., & Morris, A. J. (1999). Recurrent neuro-fuzzy networks for nonlinear process modeling. IEEE Transactions on Neural Networks, 10, 313–326.

    Article  Google Scholar 

  • Zhou, Y., Li, S., & Jin, R. (2002). A new fuzzy neural network with fast learning algorithm and guaranteed stability for manufacturing process control. Fuzzy Sets and Systems, 132, 201–216.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhoua, S., Feng, G., & Feng, C. B. (2005). Robust control for a class of uncertain nonlinear systems: adaptive fuzzy approach based on backstepping. Fuzzy Sets and Systems, 151, 1–20.

    Article  MathSciNet  Google Scholar 

  • Zimmermann, H. J. (1991). Fuzzy set theory and its application (2nd ed.). Boston, MA: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiannis Boutalis .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boutalis, Y., Theodoridis, D., Kottas, T., Christodoulou, M.A. (2014). Introduction and Scope of Part I. In: System Identification and Adaptive Control. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-319-06364-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06364-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06363-8

  • Online ISBN: 978-3-319-06364-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics