Skip to main content

Using Experimentally Determined Resonant Behaviour to Estimate the Design Parameter Variability of Thermoplastic Honeycomb Sandwich Structures

  • Conference paper
  • First Online:
Multiscale Modeling and Uncertainty Quantification of Materials and Structures
  • 1015 Accesses

Abstract

Honeycomb panels combine a high specific strength and stiffness with a low areal mass. Consequently, these structures are ideally suited for ground transportation vehicle purposes. They have a complex but regular geometry.

This paper describes the full process of estimating the variability of some of the panel design parameters of thermoplastic honeycomb structures. The uncertainty of the various stiffness parameters of the core and skin is estimated from the experimentally determined modal behaviour of a set of honeycomb beam and panel samples. This work thus deals with uncertainty quantification by considering an inverse problem. Variability analysis are carried out at different scales in order to obtain a full scope of the impact and origin (from the manufacturing process) of honeycomb design parameter variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnst M, Ghanem R, Soize C (2010) Identification of Bayesian posteriors for coefficients of chaos expansions. J Comput Phys 229:3134–3154

    Article  MATH  MathSciNet  Google Scholar 

  • Berthelot J-M (1996) Matériaux composites – Comportement mécanique et analyse des structures, 2nd edn. Masson. Lavoisier, Paris

    Google Scholar 

  • Blevins RD (1984) Formulas for natural frequency and mode shape. Krieger Publishing Company, Malabar

    Google Scholar 

  • Bultheel A (2006) Inleiding tot de numerieke wiskunde, Acco. Leuven

    Google Scholar 

  • Carmola RE, Chimowitz EH (1990) Analysis of modal reduction techniques for the dynamics of tridiagonal systems. Comput Chem Eng 14(2):220–239

    Article  Google Scholar 

  • Cauberghe B (2004) Applied frequency-domain system identification in the field of experimental and operational modal analysis. Phd thesis, University of Brussels, Brussels

    Google Scholar 

  • Chen N-Z, Guedes Soares C (2008) Spectral stochastic finite element analysis for laminated composite plates. Comput Method Appl Mech Eng 197:4830–4839

    Article  MATH  Google Scholar 

  • Cooker MJ (1990) A boundary-integral method for water wave motion over irregular beds. Eng Anal Bound Elem 7(4):205–213

    Article  Google Scholar 

  • Daniel O, Ishai IM (2006) Engineering mechanics of composite materials, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • De Gersem H, Moens D, Vandepitte D (2005) A fuzzy finite element procedure for the calculation of uncertain frequency response functions of damped structures: Part 2 – numerical case studies. J Sound Vib 288(3):463–486

    Article  Google Scholar 

  • Desceliers C, Ghanem RG, Soize C (2006) Maximum likelihood estimation of stochastic chaos representations from experimental data. Int J Numer Methods Eng 66(6):978–1001

    Article  MATH  MathSciNet  Google Scholar 

  • Desceliers C, Soize C, Ghanem R (2007) Identification of chaos representations of elastic properties of random media using experimental vibration tests. Comput Mech 39:831–838

    Article  MATH  Google Scholar 

  • Ewins DJ (1986) Modal testing: theory and testing. Research Studies Press Ltd, London

    Google Scholar 

  • Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Kluwer Academic Publishers, Dordrecht/Boston, 286 pp. ISBN 0-7923-3431-0

    Book  MATH  Google Scholar 

  • Friswell MI, Mottershead JE, Ahmadian H (2001) Finite element model updating using experimental test data: parameterization and regularization. Trans R Soc Lond Ser A Spec Issue Exp Modal Anal 359(1778):169–186

    Article  MATH  Google Scholar 

  • Ghanem RG (1991) Stochastic finite elements, a spectral approach. Johns Hopkins University, Springer, New York

    Book  MATH  Google Scholar 

  • Ghanem RG (2006) On the construction and analysis of stochastic models: characterization and propagation of the errors associated with limited data. J Comput Phys 217:63–81

    Article  MATH  MathSciNet  Google Scholar 

  • Ghanem RG, Doostan A, Red-Horse J (2005) A probabilistic construction of model validation. Comput Method Appl Mech Eng 197(29–32):2585–2595

    Google Scholar 

  • Gibson LJ, Ashby MF (1988) Cellular solids. Pergamon Press, New York

    MATH  Google Scholar 

  • Govers Y, Link M (2010) Stochastic model updating-covariance matrix adjustment form uncertain experimental data. Mech Syst Signal Process 24:696–706

    Article  Google Scholar 

  • Heylen W, Lammens S, Sas P (2003) Modal analysis: theory and testing. KU Leuven, Leuven

    Google Scholar 

  • Ibrahim SR (1997) Multi-perturbed analytical models for updating and damage detection. In: Proceedings of IMAC XV conference, pp 127–141

    Google Scholar 

  • Kappagantu R, Feeny BF (1999) An optimal modal reduction of a system with frictional excitation. J Sound Vib 224(5):863–877

    Article  Google Scholar 

  • Lauwagie T (2005) Vibration-based methods for the identification of the elastic properties of layered materials. Phd thesis, KU Leuven, Leuven. D/2005/7515/80

    Google Scholar 

  • Leuven Measurement Systems: LMS International Siemens NX PLM Software

    Google Scholar 

  • Liu Q (2001) Prediction of natural frequencies of a sandwich panel using thick plate theory. J Sandw Struct Mater 3(4):289

    Article  Google Scholar 

  • Liu Q (2002) Role of anisotropic core in vibration properties of honeycomb sandwich panels. J Thermoplast Compos Mater 15(1):23–32

    Article  MATH  Google Scholar 

  • Liu Q (2007) Effect of soft honeycomb core on flexural vibration of sandwich panel using low order and high order shear deformation models. J Sandw Struct Mater 9(1):95–108

    Article  Google Scholar 

  • Loeve M (1977) Probability theory, 4th edn. Springer, New York

    MATH  Google Scholar 

  • Loeve M (1997) Probability theory, 4th edn. Springer, New York

    Google Scholar 

  • Manan A, Cooper JE (2010) Prediction of uncertain frequency response function bounds using polynomial chaos expansion. J Sound Vib 329:3348–3358

    Article  Google Scholar 

  • Mares C, Friswell MI, Mottershead JE (2002) Model updating using Robust estimation. Mech Syst Signal Process 16(1):169–183

    Article  Google Scholar 

  • Mares C, Mottershead JE, Friswell MI (2006) Stochastic model updating: Part 1 – theory and simulated example. Mech Syst Signal Process 20(7):1674–1695

    Article  Google Scholar 

  • Mehrez L, Doostan A (2012a) Stochastic identification of composite material properties from limited experimental databases, Part I: Experimental database construction. Mech Syst Signal Process 27:471–483

    Article  Google Scholar 

  • Mehrez L, Doostan A (2012b) Stochastic identification of composite material properties from limited experimental databases, Part II: uncertainty modelling. Mech Syst Signal Process 27:484–498

    Article  Google Scholar 

  • Moens D, Vandepitte D (2004) An interval finite element approach for the calculation of envelope frequency response functions. Int J Numer Methods Eng 61(14):2480–2507

    Article  MATH  Google Scholar 

  • Moens D, Vandepitte D (2005a) A survey of non-probabilistic uncertainty treatment in finite element analysis. Comput Methods Appl Mech Eng 194(12–16):1527–1555

    Article  MATH  Google Scholar 

  • Moens D, Vandepitte D (2005b) A fuzzy finite element procedure for the calculation of uncertain frequency response functions of damped structures: Part 1 – procedure. J Sound Vib 288(3):431–462

    Article  Google Scholar 

  • Moens D, Vandepitte D (2006) Sensitivity analysis of frequency response function envelopes of mechanical structures. In: Proceedings of the international conference on noise and vibration engineering, Leuven. pp 4197–4212

    Google Scholar 

  • Nilsson E, Nilsson AC (2002) Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores. J Sound Vib 251(3):409–430

    Article  Google Scholar 

  • Pradlwarter HJ, Schuëller GI (1997) On advanced Monte Carlo simulation procedures in stochastic structural dynamics. Int J Non-Linear Mech 32(4):735–744

    Article  MATH  Google Scholar 

  • Randall RB B. Tech (1987) Frequency analysis. K. Larsen & Son. Glostrup

    Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, New York

    Book  MATH  Google Scholar 

  • Schenk A, Schuëller GI (2005) Uncertainty assessment of large finite element systems. Springer, Innsbruck

    MATH  Google Scholar 

  • Schuëller GI, Pradlwarter HJ (2009) Uncertain linear systems in dynamics: retrospective and recent developments by stochastic approaches. Eng Struct 31(11):2507–2517

    Article  Google Scholar 

  • Schultz T, Sheplak M, Louis N (2007) Application of multivariate uncertainty analysis to frequency response function estimates. J Sound Vib 305:116–133

    Article  Google Scholar 

  • Scott WA (1992) Multivariate density estimation: theory, practice and visualization. Wiley, New York

    Book  MATH  Google Scholar 

  • Scott WA (2002) Maximum likelihood estimation using the empirical Fisher information matrix. J Stat Comput Simul 72(8):599–611

    Article  MATH  MathSciNet  Google Scholar 

  • Siemens NX Nastran, NX8, cast

    Google Scholar 

  • Soize C (2003) Random matrix theory and non-parametric model of random uncertainties in vibration analysis. J Sound Vib 263:893–916

    Article  MATH  MathSciNet  Google Scholar 

  • Soize C (2010) Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data. Comput Method Appl Mech Eng 199(33–36):2150–2164

    Article  MATH  MathSciNet  Google Scholar 

  • Soize C (2011) A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension. Comput Method Appl Mech Eng 200:3083–3099

    Article  MATH  MathSciNet  Google Scholar 

  • Topdar P (2003) Finite element analysis of composite and sandwich plates using a continuous inter-laminar shear stress model. J Sandw Struct Mater 5:207–231

    Article  Google Scholar 

  • Van Benthem JFAK (1976) Modal reduction principles. J Symb Log 42(2):301–312

    Article  Google Scholar 

  • Yang QW (2009) Model reduction by Neumann series expansion. Appl Math Model 33(12):4431–4434

    Article  MATH  MathSciNet  Google Scholar 

  • Zarate BA, Caicedo JM (2008) Finite element model updating: multiple alternatives. Eng Struct 30(2008):3724–3730

    Article  Google Scholar 

  • Zenkert D (1997) An introduction to sandwich construction. Emas Publishing, London

    Google Scholar 

  • Zhang EL, Feissel P, Antoni J (2011) A comprehensive Bayesian approach for model updating and quantification of modelling errors. Prob Eng Mech 26:550–560

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Vandepitte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Debruyne, S., Vandepitte, D. (2014). Using Experimentally Determined Resonant Behaviour to Estimate the Design Parameter Variability of Thermoplastic Honeycomb Sandwich Structures. In: Papadrakakis, M., Stefanou, G. (eds) Multiscale Modeling and Uncertainty Quantification of Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-06331-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06331-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06330-0

  • Online ISBN: 978-3-319-06331-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics