Skip to main content

Abstract

Open cell metal foams can be represented by a network of beams. Due to the heterogeneity of the geometry, the length scale of the representative volume element is often nearly of the same order as the length scale of structures made of metal foam. Therefore, classical homogenization techniques for the computation of effective properties can not be applied. Statistical volume elements lead to apparent material properties that depend on the boundary conditions. Here, we introduce a model for structures made of metal foam that consists of two domains, an interior region and a boundary region. For both regions, unique random fields are identified by simulations of the microstructure. The model is validated by comparison with Finite Element simulations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aurenhammer F (1987) Power diagrams: properties, algorithms and applications. SIAM J Comput 16:78–96

    Article  MATH  MathSciNet  Google Scholar 

  • Di Paola F (2011) Modélisation multi-échelles du comportement thermo-élastique de composites à particules sphériques. Dissertation, Ecole Centrale de Paris

    Google Scholar 

  • Dirrenberger J, Forest S, Jeulin D (2014) Towards gigantic RVE sizes for 3D stochastic fibrous networks. Solids Struct 51:359–376

    Article  Google Scholar 

  • Drugan WJ, Willis JR (1996) A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J Mech Phys Solids 44(4):497–524

    Article  MATH  MathSciNet  Google Scholar 

  • Fraunhofer ITWM, Department Image Processing (Hrsg.) (2006) MAVI – modular algorithms for volume images. Department Image Processing, Fraunhofer ITWM, Kaiserslautern. http://www.mavi-3d.de

  • Gibson LJ, Ashby MF (1997) Cellular solids – structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  • Guilleminot J, Noshadravan A, Soize C, Ghanem RG (2011) A probabilistic model for bounded elasticity tensor random fields with application to polycristalline microstructures. Comput Methods Appl Mech Eng 200:1637–1648

    Article  MATH  MathSciNet  Google Scholar 

  • Hardenacke V, Hohe J (2009) Local probabilistic homogenization of two-dimensional model foams accounting for micro structural disorder. Int J Solids Struct 46:989–1006

    Article  MATH  Google Scholar 

  • Hardenacke V, Hohe J (2010) Assessment of space division strategies for generation of adequate computational models for solid foams. Int J Mech Sci 52:1772–1782

    Article  Google Scholar 

  • Hazanov S, Huet C (1994) Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume. J Mech Phys Solids 42(12):1995–2011

    Article  MATH  MathSciNet  Google Scholar 

  • Huet C (1990) Application of variational concepts to size effects in elastic heterogeneous bodies. J Mech Phys Solids 38(6):813–841

    Article  MathSciNet  Google Scholar 

  • Kanaun S, Tkachenko O (2007) Representative volume element and effective elastic properties of open cell foam materials with random microstructues. J Mech Mater Struct 2(6):1607–1628

    Article  Google Scholar 

  • Kanaun S, Tkachenko O (2008) Effective conductive properties of open-cell foams. Int J Eng Sci 46:551–571

    Article  MATH  MathSciNet  Google Scholar 

  • Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679

    Article  MATH  Google Scholar 

  • Lautensack C (2008) Fitting three-dimensional Laguerre tessellations to foam structures. J Appl Stat 35(9):985–995

    Article  MATH  MathSciNet  Google Scholar 

  • Liebscher A, Redenbach C (2013) Statistical analysis of the local strut thickness of open cell foams. Image Anal Stereol. Accepted for publication 32:1–12

    Article  MathSciNet  Google Scholar 

  • Liebscher A, Proppe C, Redenbach C, Schwarzer D (2012) Uncertainty quantification for metal foam structures by means of digital image based analysis. Probab Eng Mech 28:143–152

    Article  Google Scholar 

  • Ohser J, Schladitz K (2009) 3D images of materials structures – processing and analysis. Wiley, Heidelberg

    Book  Google Scholar 

  • Ostoja-Starzewski M (2007) Microstructural randomness and scaling in mechanics of materials. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Ostoja-Starzewski M (2011) Stochastic finite elements: where is the physics? Theor Appl Mech 38:379–396

    Article  MATH  MathSciNet  Google Scholar 

  • Phoon KK, Huang SP, Quek ST (2005) Simulation of strongly non-Gaussian processes using Karhunen-Loève expansion. Probab Eng Mech 20:188–198

    Article  Google Scholar 

  • Redenbach C (2009) Microstructure models for cellular materials. Comput Mater Sci 44:1397–1407

    Article  Google Scholar 

  • Soille P (1999) Morphological image analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  • Stoyan D, Kendall, WS, Mecke J (1995) Stochastic geometry and its applications, 2nd edn. Wiley, Chichester

    MATH  Google Scholar 

  • Zhu HX, Hobdell JR, Windle AH (2000) Effects of cell irregularity on the elastic properties of open-cell foams. Acta Mater 48(20):4893–4900

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the German Research Foundation (DFG) under grants RE 3002/1-1 and PR 1114/10-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Geißendörfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Geißendörfer, M., Liebscher, A., Proppe, C., Redenbach, C., Schwarzer, D. (2014). Statistical Volume Elements for Metal Foams. In: Papadrakakis, M., Stefanou, G. (eds) Multiscale Modeling and Uncertainty Quantification of Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-06331-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06331-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06330-0

  • Online ISBN: 978-3-319-06331-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics