Advertisement

Advances in Modeling of Water Quality in Estuaries

  • Isabella Ascione Kenov
  • Francisco Campuzano
  • Guilherme Franz
  • Rodrigo Fernandes
  • Claudia Viegas
  • João Sobrinho
  • Hilda de Pablo
  • Andreia Amaral
  • Ligia Pinto
  • Marcos Mateus
  • Ramiro Neves
Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 9)

Abstract

Water quality models are in great demand to complement studies about the status of estuarine waters. However, local models do not perform well when boundary conditions are not properly defined and when biogeochemical processes are not described with adequate detail. This chapter presents advanced modeling applications to perform water quality studies in Portuguese estuaries. Boundary conditions for hydrodynamics and biogeochemistry are provided by the Portuguese Coast Operational Model, downscaled by using nested domains with increasing resolution from the regional to the local scale. The nested models of the estuaries are described, and case studies are presented for specific estuaries to compute sediment transport (Tagus estuary), to calculate residence time of water (Mondego estuary), to forecast quality of bathing waters (Estoril Coast), and to quantify nutrient fluxes between estuaries and the open ocean (Ria de Aveiro). The level of detail used to represent biological processes in water quality models is also addressed, including the description of a case study about modeling of species vulnerable to water quality, such as Zostera noltii in Ria de Aveiro. The need for high level of detail to represent microbial loop and carbon cycle in estuaries is discussed with the application of a complex biological model to the Tagus estuary.

Keywords

Freshwater Inflow Water Quality Model Nest Domain Biogeochemical Property Tagus Estuary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Professor J.F. Da Silva of the Aveiro University for kindly providing monitoring data collected in Ria de Aveiro. Dr. Pedro Chambel, for kindly providing data of nutrients and freshwater inflows, calculated by using the SWAT model applied to the Vouga catchment. SANEST Project, S.A. (Saneamento Básico da Costa do Estoril) – Guia Submarine Outfall Monitoring Program. RECONNECT research project funded by Fundação para a Ciencia e Tecnologia (FCT), under contract n. PTDC/MAR/64627/2006. LENVIS Project (FP7-ICT-2007/2/223925) financed by 7 FP7 of the European Commission. EASYCO Project, financed by the Atlantic Area Transnational Programme of the European Commission (EC), priority 2, through the European Regional Development Fund (ERDF), contract n. 2008-1/002. EMoSEM Project, contract n. SD/ER/11, financed under the network program ERANET SEAS-ERA “Towards Integrated Marine Research Strategy and Programmes”.

References

  1. Ali A, Lemckert CJ, Zhang H, Dunn RJK (2013) Sediment dynamics of a very shallow subtropical estuarine lake. J Coast Res. doi: 10.2112/JCOASTRES-D-12-00255.1 Google Scholar
  2. Ascione Kenov I, Garcia AC, Neves R (2012) Residence time of water in the Mondego estuary (Portugal). Estuar Coast Shelf Sci 106:13–22. doi: 10.1016/j.ecss.2012.04.008 CrossRefGoogle Scholar
  3. Ascione Kenov I, Deus R, Alves CN, Neves R (2013) Modelling seagrass biomass and relative nutrient content. J Coast Res. doi: 10.2112/JCOASTRES-D-13-00047.1 Google Scholar
  4. Baretta JW, Ebenhoh W, Ruardij P (1995) The European-regional-seas-ecosystem-model, a complex marine ecosystem model. Neth J Sea Res 33(3–4):233–246CrossRefGoogle Scholar
  5. Baretta-Bekker JG, Baretta JW, Ebenhoh W (1997) Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake. J Sea Res 38(3–4):195–211CrossRefGoogle Scholar
  6. Bierman P, Lewis M, Ostendorf B, Tanner J (2011) A review of methods for analysing spatial and temporal patterns in coastal water quality. Ecol Indic 11(1):103–114. doi: 10.1016/j.ecolind.2009.11.001 CrossRefGoogle Scholar
  7. Borsheim KY (2000) Bacterial production rates and concentrations of organic carbon at the end of the growing season in the Greenland Sea. Aquat Microb Ecol 21(2):115–123CrossRefGoogle Scholar
  8. Braunschweig F, Martins F, Chambel P, Neves R (2003) A methodology to estimate renewal time scales in estuaries: the Tagus Estuary case. Ocean Dyn 53(3):137–145. doi: 10.1007/s10236-003-0040-0 CrossRefGoogle Scholar
  9. Bulleri F, Chapman MG (2010) The introduction of coastal infrastructure as a driver of change in marine environments. J Appl Ecol 47:26–35CrossRefGoogle Scholar
  10. Campuzano F, Nunes S, Malhadas MS, Neves R (2010) Modelling hydrodynamics and water quality of Madeira Island. GLOBEC Int Newsl 16(1):40–42Google Scholar
  11. Campuzano F, Fernandes R, Leitâo P, Viegas C, De Pablo H, Neves R (2012) Implementing local operational models based on an offline downscaling technique: the Tagus estuary case. In: 2.as Jornadas de Engenharia Hidrográfica, Lisbon, 20–22 June 2012, pp 105–108Google Scholar
  12. Canteras JC, Juanes JA, Pérez L, Koev KN (1995) Modelling the coliforms inactivation rates in the Cantabrian Sea (Bay of Biscay) from in situ and laboratory determinations of t90. Water Sci Technol 32(2):37–44. doi: 10.1016/0273-1223(95)00567-7 CrossRefGoogle Scholar
  13. Chibole OK (2013) Modeling River Sosiani’s water quality to assess human impact on water resources at the catchment scale. Ecohydrol Hydrobiol 13(4):241–245. doi: 10.1016/j.ecohyd.2013.10.003 CrossRefGoogle Scholar
  14. Choi KW, Lee JHW (2004) Numerical determination of flushing time for stratified water bodies. J Mar Syst 50(3–4):263–281. doi: 10.1016/j.jmarsys.2004.04.005 CrossRefGoogle Scholar
  15. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  16. Cucco A, Umgiesser G (2006) Modeling the Venice Lagoon residence time. Ecol Model 193(1–2):34–51. doi: 10.1016/j.ecolmodel.2005.07.043 CrossRefGoogle Scholar
  17. Cunha AH, Assis JF, Serrão EA (2013) Seagrasses in Portugal: a most endangered marine habitat. Aquat Bot 104:193–203CrossRefGoogle Scholar
  18. Deus R, Brito D, Ascione KI, Lima M, Costa V, Medeiros A, Neves R, Alves CN (2013) Three-dimensional model for analysis of spatial and temporal patterns of phytoplankton in Tucuruí reservoir, Pará, Brazil. Ecol Model 253:28–43CrossRefGoogle Scholar
  19. Dias JM, Lopes JF, Dekeyser I (2000) Tidal propagation in Ria de Aveiro Lagoon, Portugal. Phys Chem Earth B 25(4):369–374CrossRefGoogle Scholar
  20. Fernandes R (2005) Modelação operacional no estuário do Tejo. Instituto Superior Técnico, Technical university of Lisbon, LisbonGoogle Scholar
  21. Fernandes L, Saraiva S, Leitão PC, Pina P, Santos A, Braunschweig F, Neves R (2006) Mabene deliverable D4.3d-code and description of the benthic biogeochemistry module-managing benthic ecosystems in relation to physical forcing and environmental constraints. MaBenE-Managing benthic ecosystems in relation to physical forcing and environmental constraintsGoogle Scholar
  22. Grell G, Dudhia J, Stauffer D (1994) A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5)Google Scholar
  23. IST, SANEST (2004) Bacteria mortality tests considering different environmental parametersGoogle Scholar
  24. Lai YC, Tu YT, Yang CP, Surampalli RY, Kao CM (2013) Development of a water quality modeling system for river pollution index and suspended solid loading evaluation. J Hydrol 478(0):89–101. doi: 10.1016/j.jhydrol.2012.11.050 CrossRefGoogle Scholar
  25. Leitão P, Coelho H, Santos A, Neves R (2005) Modelling the main features of the Algarve coastal circulation during July 2004: a downscaling approach. J Atmos Ocean Sci 10(4):421–462. doi: 10.1080/17417530601127704 CrossRefGoogle Scholar
  26. Leitão P, Galvão P, Aires E, Almeida L, Viegas C (2012) Faecal contamination modelling in coastal waters using a web service approach. Environ Eng Manag J 11(5):899–906Google Scholar
  27. Lopes JF, Cardoso AC, Moita MT, Rocha AC, Ferreira JA (2009) Modelling the temperature and the phytoplankton distributions at the Aveiro near coastal zone, Portugal. Ecol Model 220(7):940–961. doi: 10.1016/j.ecolmodel.2008.11.024 CrossRefGoogle Scholar
  28. Mateus M (2012) A process-oriented model of pelagic biogeochemistry for marine systems. Part I: model description. J Mar Syst 94:S78–S89. doi: 10.1016/j.jmarsys.2011.11.008 CrossRefGoogle Scholar
  29. Mateus M, Leitão PC, de Pablo H, Neves R (2012a) Is it relevant to explicitly parameterize chlorophyll synthesis in marine ecological models? J Mar Syst 94:S23–S33. doi: 10.1016/j.jmarsys.2011.11.007 CrossRefGoogle Scholar
  30. Mateus M, Riflet G, Chambel P, Fernandes L, Fernandes R, Juliano M, Campuzano F, de Pablo H, Neves R (2012b) An operational model for the West Iberian coast: products and services. Ocean Sci 8(4):713–732. doi: 10.5194/os-8-713-2012 CrossRefGoogle Scholar
  31. Mateus M, Vaz N, Neves R (2012c) A process-oriented model of pelagic biogeochemistry for marine systems. Part II: application to a mesotidal estuary. J Mar Syst 94(Supplement):S90–S101. doi: 10.1016/j.jmarsys.2011.11.009 CrossRefGoogle Scholar
  32. Miranda R, Braunschweig F, Leitâo P, Martins F, Santos A (2000) MOHID2000 – a coastal integrated object oriented model. In: Hydraulic engineering software VIII. WIT PressGoogle Scholar
  33. Neves R (2013) The MOHID concept. In: Mateus M, Neves R (eds) Ocean modelling in coastal management. IST Press, Lisbon, pp 1–11Google Scholar
  34. Neves R, Silva A (1991) An extension of the Boussinesq equations to deep water. A case study. Paper presented at the computer modelling in ocean engineering, BarcelonaGoogle Scholar
  35. Neves R, Viegas C, Fernandes R, Nunes S, Pina P, Carvalho C, Granger C (2010) Ferramentas matemáticas de suporte à definição de perfis de água balnear: 2 casos de estudo, vol 30, 90th edn, Recursos Hídricos. Associação Portuguesa dos Recursos Hídricos, LisbonGoogle Scholar
  36. Pando S, Juliano MF, García R, de Jesus Mendes PA, Thomsen L (2013) Application of a lagrangian transport model to organo-mineral aggregates within the Nazaré canyon. Biogeosciences 10(6):4103–4115. doi: 10.5194/bg-10-4103-2013 CrossRefGoogle Scholar
  37. Pinto L, Campuzano F, Fernandes R, Fernandes L, Neves R (2012) An operational model for the Portuguese coast. In: 2.as Jornadas de Engenharia Hidrográfica, Lisbon, 20–22 June 2012, pp 85–88Google Scholar
  38. Silva JF, Duck RW, Anderson JM, McManus J, Monk JGC (2001) Airborne observations of frontal systems in the inlet channel of the Ria de Aveiro, Portugal. Phys Chem Earth B Hydrol Oceans Atmos 26(9):713–719. doi: 10.1016/S1464-1909(01)00075-2 CrossRefGoogle Scholar
  39. Silva J, Duck RW, Hopkins TS, Rodrigues M (2002) Evaluation of the nutrient inputs to a coastal lagoon: the case of the Ria de Aveiro, Portugal. Hydrobiologia 475–476(1):379–385. doi: 10.1023/A:1020347610968 CrossRefGoogle Scholar
  40. Silva JF, Duck RW, Catarino JB (2009) Nutrient retention in the sediments and the submerged aquatic vegetation of the coastal lagoon of the Ria de Aveiro, Portugal. J Sea Res 62:276–285CrossRefGoogle Scholar
  41. Sohma A, Sekiguchi Y, Kuwae T, Nakamura Y (2008) A benthic-pelagic coupled ecosystem model to estimate the hypoxic estuary including tidal flat-model description and validation of seasonal/daily dynamics. Ecol Model 215:10–39CrossRefGoogle Scholar
  42. Trancoso AR, Saraiva S, Fernandes L, Pina P, Leitão PC, Neves R (2005) Modelling macroalgae using a 3D hydrodynamic-ecological model in a shallow, temperate estuary. Ecol Model 187:232–246CrossRefGoogle Scholar
  43. Vichi M, Oddo P, Zavatarelli M, Coluccelli A, Coppini G, Celio M, Umani SF, Pinardi N (2003) Calibration and validation of a one-dimensional complex marine biogeochemical flux model in different areas of the northern Adriatic shelf. Ann Geophys Germany 21(1):413–436CrossRefGoogle Scholar
  44. Vichi M, Masina S, Navarra A (2007a) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part II: numerical simulations. J Mar Syst 64(1–4):110–134CrossRefGoogle Scholar
  45. Vichi M, Pinardi N, Masina S (2007b) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J Mar Syst 64(1–4):89–109CrossRefGoogle Scholar
  46. Viegas C, Nunes S, Fernandes R, Neves R (2009) Streams contribution on bathing water quality after rainfall events in Costa do Estoril – a tool to implement an alert system for bathing water quality. J Coast Res Proc 10th Int Coast Symp ICS 2009 II(Special Issue No. 56):1691–1695Google Scholar
  47. Viegas C, Neves R, Fernandes R, Mateus M (2012) Modelling tools to support an early alert system for bathing water quality. Environ Eng Manag J 11(5)Google Scholar
  48. Viero DP, D’Alpaos A, Carniello L, Defina A (2013) Mathematical modeling of flooding due to river bank failure. Adv Water Resour 59(0):82–94. doi: 10.1016/j.advwatres.2013.05.011 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Isabella Ascione Kenov
    • 1
  • Francisco Campuzano
    • 1
  • Guilherme Franz
    • 1
  • Rodrigo Fernandes
    • 1
  • Claudia Viegas
    • 1
  • João Sobrinho
    • 1
  • Hilda de Pablo
    • 1
  • Andreia Amaral
    • 1
  • Ligia Pinto
    • 1
  • Marcos Mateus
    • 1
  • Ramiro Neves
    • 1
  1. 1.Marine Environment Technology Center (MARETEC), Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations