A Fuzzy Stochastic Programming Approach for Multi-level Capacitated Lot-Sizing Problem Under Uncertainty

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 317)


This chapter develops a fuzzy stochastic multi-objective linear programming model for a multi-level, capacitated lot-sizing problem in a mixed assembly shop. The proposed model aims to minimize the total cost consisting of total variable production cost, inventory cost, backorder cost and setup cost while maximizing the resource utilization rate simultaneously. To cope with inherent mixed fuzzy-stochastic uncertainty associated with objective functions coefficients, e.g., setup, holding, and backorder costs, they are treated as fuzzy stochastic parameters with discrete probability density function. To validate the proposed model and the expediency of the proposed solution method, a number of randomly generated test problems of different sizes are solved. The results demonstrate the usefulness of the proposed model and its solution approach.


  1. 1.
    Absi, N., Kedad-Sidhoum, S.: The multi-item capacitated lot-sizing problem with setup times and shortage costs. Eur. J. Oper. Res. 185, 1351–1374 (2008)CrossRefMATHGoogle Scholar
  2. 2.
    Toledo, F.M.B., Armentano, V.A.: A Lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines. Eur. J. Oper. Res. 175, 1070–1083 (2006)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Wu, T., Shi, L., Geunes, J., Akartunali, K.: An optimization framework for solving capacitated multi-level lot-sizing problems with backlogging. Eur. J. Oper. Res. 214, 428–441 (2011)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ozdamar, L., Barbarosoglu, G.: An integrated Lagrangean relaxation-simulated annealing approach to the multi-level multi-item capacitated lot sizing problem. Int. J. Prod. Econ. 68, 319–331 (2000)Google Scholar
  5. 5.
    Helber, H., Sahling, F.: A fix-and-optimize approach for the multi-level capacitated lot sizing problem. Int. J. Prod. Econ. 123, 247–256 (2010)Google Scholar
  6. 6.
    Okhrin, I., Richter, K.: An O(T3) algorithm for the capacitated lot sizing problem with minimum order quantities. Eur. J. Oper. Res. 211, 507–514 (2011)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Narayanan, A., Robinson, P.: Efficient and effective heuristics for the coordinated capacitated lot-size problem. Eur. J. Oper. Res. 203, 583–592 (2010)CrossRefMATHGoogle Scholar
  8. 8.
    Jans, R., Degraeve, Z.: Meta-heuristics for dynamic lot sizing: a review and comparison of solution approaches. Eur. J. Oper. Res. 177, 1855–1875 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Lee, Y.Y., Kramer, B.A., Hwang, C.L.: A comparative study of three lot-sizing methods for the case of fuzzy demand. Int. J. Oper. Prod. Manage. 11, 72–80 (1991)Google Scholar
  10. 10.
    Lee, Y.Y., Kramer, B.A., Hwang, C.L.: Part-period balancing with uncertainty: a fuzzy sets theory approach. Int. J. Oper. Prod. Manage. 28, 1771–1778 (1990)Google Scholar
  11. 11.
    Pappis, C.P., Karacapilidis, N.I.: Lot size scheduling using fuzzy numbers. Int. Trans. Oper. Res. 2, 205–212 (1995)CrossRefMATHGoogle Scholar
  12. 12.
    Lee, H.M., Yao, J.S.: Economic production quantity for fuzzy demand quantity and fuzzy production quantity. Eur. J. Oper. Res. 109, 203–211 (1998)CrossRefMATHGoogle Scholar
  13. 13.
    Chang, S.C., Yao, J.S., Lee, H.M.: Economic reorder point for fuzzy backorder quantity. Eur. J. Oper. Res. 109, 183–202 (1998)CrossRefMATHGoogle Scholar
  14. 14.
    Pai, P.F.: Capacitated lot size problems with fuzzy capacity. Math. Comput. Model. 38, 661–669 (2003)Google Scholar
  15. 15.
    Florian, M., Klein, M.: Deterministic production planning with concave cost and capacity constraint. Manage. Sci. 18, 12–20 (1971)Google Scholar
  16. 16.
    Yan, W., Zhao, J., Cao, Z.: Fuzzy programming model for lot sizing production planning problem. In: Fuzzy Systems and Knowledge Discovery, pp. 285–294. Springer, Berlin (2005) Google Scholar
  17. 17.
    Sox, C., Muckstadt, J.: Optimization-based planning for the stochastic lot-scheduling problem. IIE Trans. (Institute of Industrial Engineers) 29, 349–357 (1997)Google Scholar
  18. 18.
    Brandimarte, P.: Multi-item capacitated lot-sizing with demand uncertainty. Int. J. Prod. Res. 44, 2997–3022 (2006)CrossRefMATHGoogle Scholar
  19. 19.
    Tempelmeier, H., Herpers, S.: ABCβ-a heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint. Int. J. Prod. Res. 48, 5181–5193 (2010)CrossRefMATHGoogle Scholar
  20. 20.
    Tempelmeier, H.: A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint. Omega 39, 627–633 (2011)CrossRefGoogle Scholar
  21. 21.
    Mahdavi, I., Shirazi, B., Solimanpur, M., Sahebjamnia, N.: Lot size approximation based on minimising total delay in a shop with multi-assembly products. Int. J. Prod. Res. 47, 2685–2703 (2009)CrossRefMATHGoogle Scholar
  22. 22.
    Luhandjula, M.K., Gupta, M.M.: On fuzzy stochastic optimization. Fuzzy Sets Syst. 81, 47–55 (1996)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Shih, C.J., Wangsawidjaja, R.A.S.: Mixed fuzzy-probabilistic programming approach for multi-objective engineering optimization with random variables. Comput. Struct. 59, 283–290 (1996)Google Scholar
  24. 24.
    Zmeškal, Z.: Value at risk methodology under soft conditions approach (fuzzy-stochastic approach). Eur. J. Oper. Res. 161, 337–347 (2005)CrossRefMATHGoogle Scholar
  25. 25.
    Van Hop, N.: Solving fuzzy (stochastic) linear programming problems using superiority and inferiority measures. Inf. Sci. 177, 1977–1991 (2007)CrossRefMATHGoogle Scholar
  26. 26.
    Torabi, S.A., Hassini, E.: An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159, 193–214 (2008)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Jiménez, M.: Ranking fuzzy numbers through the comparison of its expected intervals. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 4, 379–388 (1996)CrossRefMATHGoogle Scholar
  28. 28.
    Iskander, M.G.: A suggested approach for possibility and necessity dominance indices in stochastic fuzzy linear programming. Appl. Math. Lett. 18, 395–399 (2005)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Ruszczynski, A., Shapiro, A.: Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier, Amsterdam (2003) Google Scholar
  30. 30.
    Ho, C.-J.: Evaluating the impact of operating environments on MRP system nervousness. Int. J. Prod. Res. 27, 1115–1135 (1989)CrossRefGoogle Scholar
  31. 31.
    Guan, Y., Liu, T.: Stochastic lot-sizing problem with inventory-bounds and constant order-capacities. Eur. J. Oper. Res. 207, 1398–1409 (2010)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Xie, J., Zhao, X., Lee, T.S.: Freezing the master production schedule under single resource constraint and demand uncertainty. Int. J. Prod. Econ. 83, 65–84 (2003)CrossRefGoogle Scholar
  33. 33.
    Dellaert, N.P., Jeunet, J.: Randomized multi-level lot-sizing heuristics for general product structures. Eur. J. Oper. Res. 148, 211–228 (2003)CrossRefMATHGoogle Scholar
  34. 34.
    Jiménez, M., Arenas, M., Bilbao, A., Rodríguez, M.V.: Linear programming with fuzzy parameters: an interactive method resolution. Eur. J. Oper. Res. 177, 1599–1609 (2007)CrossRefMATHGoogle Scholar
  35. 35.
    Pishvaee, M.S., Torabi, S.A.: A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets Syst. 161, 2668–2683 (2010)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of TehranTehranIran

Personalised recommendations