Decision-Making Based on Fuzzy Estimation of Quality Level for Cargo Delivery

Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 317)

Abstract

This chapter presents the proposed approach and algorithms for designing hierarhical decision support systems (DSS) based on fuzzy logic with flexible rule base. Special case of changing the structure of the input data’s vector for DSS in transport logistics is considered by authors. The main idea is a correction of fuzzy rule base of fuzzy DSS when different decision-makers can decrease dimension of the vector of DSS’s input coordinates according to their own priorities and criteria. Simulation results confirm the effectiveness and appropriateness of editing fuzzy knowledge bases rules for DSS which solve the problems of transport logistics.

Keywords

Transport logistics DSS Fuzzy logic Knowledge base Optimization of rules 

References

  1. 1.
    Gil-Lafuente, A.M.: Fuzzy Logic in Financial Analysis. Studies in Fuzziness and Soft Computing. Springer, Berlin (2005)Google Scholar
  2. 2.
    Kondratenko, Y.P.: Optimisation problems in marine transportation. Incidencia de las relaciones economicas internacionales en la recuperacion economica del area mediterranea. In: Real Academia de Ciencias Economicas y Financieras, Barcelona, pp. 43–52 (2011)Google Scholar
  3. 3.
    Rotshtein, A.P.: Intellectual Technologies of Identification: Fuzzy Logic, Genetic Algorithms, Neuron Networks. Universum, Vinnitsa (1999). (In Russian)Google Scholar
  4. 4.
    Encheva, S., Kondratenko, Y., Solesvik, M., Tumil, S.: Decision Support Systems in Logistics. In: International Electronic Conference on Computer Science, pp. 254–256 (2007)Google Scholar
  5. 5.
    Mirotin, L.B.: Transport Logistics. Publishing House Examen, Moscow (2005). (In Russian)Google Scholar
  6. 6.
    Kondratenko, Y.P., Sidenko, Ie.V.: Correction of the knowledge database of fuzzy decision support system with variable structure of the input data. In: International Conference MS’12, pp. 56–61, Minsk (2012)Google Scholar
  7. 7.
    Kondratenko, Y.P., Encheva, S.B., Sidenko, Ie.V.: Synthesis of intelligent decision support systems for transport logistic. In: IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 642–646, Prague (2011)Google Scholar
  8. 8.
    Leonenkov, A.V.: Fuzzy Simulation in the Environment MatLab and FuzzyTECH. BHV-Petersburg, Sanct-Petersburg (2005). (In Russian)Google Scholar
  9. 9.
    Piegat, A.: Fuzzy Modeling and Control. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Gil-Aluja, J., Gil-Lafuente, A.M., Klimova, A.: The optimization of the economic segmentation by means of fuzzy algorithms. J. Comput. Optim. Econ. Finan 1(3), 169–186 (2011)Google Scholar
  11. 11.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Kondratenko, Y.P., Klymenko, L.P., Al Zu’bi, E.Y.M.: Structural optimisation of fuzzy controllers base of intelligent rules. Lect. Model. Simul. 11(1), 99–108 (2010)Google Scholar
  13. 13.
    Oleynik, A.A., Subbotin, S.A.: The fuzzy rule base reduction based on multiagent approach. In: Herald of the National Technical University KhPI, Kharkov, 2009, no. 43, pp. 126–137 (In Ukrainian)Google Scholar
  14. 14.
    Jantsen, J.: A robustness study of fuzzy control rules. In: Proceedings of the International Conference on EUFIT’97, pp. 1223–1227, Aachen (1997)Google Scholar
  15. 15.
    Sanchez, V.L., Otero, J.: Boosting fuzzy rules in classification problems under single-winner inference. Int. J. Intell. Syst. 1021–1035 (2007)Google Scholar
  16. 16.
    Yager, R., Filev, D.: Essential of Fuzzy Modeling and Control. Wiley, New York (1994)Google Scholar
  17. 17.
    Ching-Chang, W., Nin-Shen, L.: Rule extraction for fuzzy modelling. Fuzzy Sets Syst 2, 23–30 (1997)CrossRefGoogle Scholar
  18. 18.
    Miller, C.A.: The magic number seven plus or minus two: some limits on our capacity for proceeding information. Psychol. Rev. 63, 81–97 (1956)Google Scholar
  19. 19.
    Kondratenko, Y.P., Sidenko, Ie.V.: Method of actual correction of the knowledge database of fuzzy decision support system with flexible hierarchical structure. J. Comput. Optim. Econ. Finan. 4(2–3), 57–76 (2012)Google Scholar
  20. 20.
    Fuzzy Logic Toolbox. User’s Guide, Version 2, The MathWorks, Inc. (1999)Google Scholar
  21. 21.
    Shtovba, S.D.: The design of fuzzy systems by means of MatLab. Hot line—Telecom, Moscow (2007) (In Russian)Google Scholar
  22. 22.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. In: IEEE Transactions on Systems, Man and Cybernetics. 15(1), 116–132 (1985)Google Scholar
  23. 23.
    Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. In: IEEE Transactions on Computers. 26(12), 1182–1191 (1977) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Intelligent Information SystemsPetro Mohyla Black Sea State UniversityMykolaivUkraine

Personalised recommendations