The Development of an Algorithmic Model of Object Recognition Using Visual and Sound Information Based on Neuro-fuzzy Logic

Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 317)

Abstract

The chapter considers the problem of recognition of visual and sound information by constructing a virtual environment, which allows a qualitatively simple system to carry out experiments and create an algorithmic model of pattern recognition comparable to human capabilities. The aim of the research is to obtain an algorithmic model that can extract from the surrounding world, “meaningful” (visual and sound) objects to link with the relevant lexical concepts which are the atomic building blocks of intelligence. The research is dedicated to the development of machine intelligence with the phased increase in the complexity of the behavioral model of artificial personality (AP), with the goal being experimental research in the problem of artificial intelligence.

Keywords

Pattern recognition Artificial personality Unitary square Lexical concepts Local focus Hybrid method of decision making 

References

  1. 1.
    Abakumov, V.G., Krilov, V.N., Antoshuk, S.G.: Detection and recognition of attributes of the objects using a spherical model of the visual analyzer. Electron. Commun. 8(2), 211–212 (2000)Google Scholar
  2. 2.
    Belyavchev, V.G., Voskoboiniov, Y.E.: Local adaptive filtering algorithms for digital images. Sci. Bull. NQTU. 3, 21–32 (1997)Google Scholar
  3. 3.
    Breiman, Friedman: Classification and Regression Trees, Olshen and Stone. Wadsworth and Brooks, Monterey (1985)Google Scholar
  4. 4.
    Dai, Y., Nakano, Y.: Recognition of facial images with low resolution using a Hopfield memory model. Pattern Recogn. 31, 159–167 (1998)CrossRefGoogle Scholar
  5. 5.
    Drouin, M., Abou-Kandil, H., Mariton, M., Duc, G.: Une nouvelle methode de decompozision-coordinasion 1 re partie: Principe et mise en ocuvre. APII. 3, 205–226 (1985)Google Scholar
  6. 6.
    Duc, G., Drouin, M., Mariton, M., Abou-Kandil, H.: Une nouvelle methode de decomposition-coordination. 2 e partie: Application a la compensation des systemes multivariables. APII. 3, 227–242 (1985)Google Scholar
  7. 7.
    Frei, W.: Image enhancement by histogram hyperbolization. Comput. Graph. Image Proc. 6(3), 286–294 (1977)Google Scholar
  8. 8.
    Gonzalez, R.C., Fittes, B.A.: Gray–level transformation for interactive image enhancement. Mech. Mach. Theory. 12, 111–112 (1975)Google Scholar
  9. 9.
    Gonzalez, R.C., Wintz, P.: Digital Image Processing, p. 505. Addison–Wesley, Reading (1987)Google Scholar
  10. 10.
    Gutta, S., Wechsler, H.: Face recognition using hybrid classifiers. Pattern Recogn. 30, 539–553 (1997)CrossRefGoogle Scholar
  11. 11.
    Hall, E.L.: Almost uniform distribution for computer image enhancement. IEEE Trans. Comput. 23(2), 207–208 (1974)Google Scholar
  12. 12.
    Jacobsen, X., Zscherpel, U., Perner, P.: A comparison between neural networks and decision trees. Machine learning and data mining in pattern recognition. Lecture Notes in Artificial Intelligence, pp. 144–158 (1999)Google Scholar
  13. 13.
    Jang, J.S.R.: ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 23(5/6), 665–685 (1993)CrossRefGoogle Scholar
  14. 14.
    Jang, J.S.R., Gulley, N.: The Fuzzy Logic Toolbox for Use with MATLAB. The MathWorks Inc, Natick (1995)Google Scholar
  15. 15.
    Lee, Y.: Handwritten digit recognition using K neares-neighbor, radial-basis function, and back-propagation neural networks. Neural Comput. 3, 440–449 (1991)CrossRefGoogle Scholar
  16. 16.
    Michie, D., Spiegelharter, D.J., Taylor, C.C (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York (1994)Google Scholar
  17. 17.
    Petrou, M.: Learning in pattern recognition. Machine learning and data mining in pattern recognition. Lecture Notes in Artificial Intelligence, pp. 1–12 (1999)Google Scholar
  18. 18.
    Ranganath, S., Arun, K.: Face recognition using transform features and neural networks. Pattern Recogn. 30, 1615–1622 (1997)CrossRefGoogle Scholar
  19. 19.
    Sergeev, V.V.: Application of a pattern recognition tasks in digital image processing. Autosummetry. 2, 63–76 (1998)Google Scholar
  20. 20.
    Shahbazova, S.H.N., Suleymanov, M.R.: Stages of recognition probability images. In: Proceedings of AzTU (2004)Google Scholar
  21. 21.
    Shahbazova, S.H.N., Bonfig, K.V., Suleymanov, M.R.: Questions of construction of system of recognition of non-standard image and speech in the architecture of a hybrid vehicle based on neuro-fuzzy logic. In: 2nd international conference on application of fuzzy systems and software computing and analysis system, decision and control. Barcelona, Spain (2004)Google Scholar
  22. 22.
    Sabah, G.: Knowledge representation and natural language understanding. AI Commun. 6(3–4), 155–186 (1993)Google Scholar
  23. 23.
    Valentin, D., Abdi, H., O’Toole, A.J., Cottrell, G.W.: Connectionist models of face processing: a survey. Pattern Recognit. 27, 1209–1230 (1994)CrossRefGoogle Scholar
  24. 24.
    Vetter, T., Poggio, T.: Linear object classes and image synthesis from a single example image. IEEE Trans. Pattern Anal. Mach. Intell. 19, 733–742 (1997)CrossRefGoogle Scholar
  25. 25.
    Yoon, K.S., Ham, Y.K., Park, R.-H.: Hybrid approaches to frontal view face recognition using the hidden markov model and neural network. Pattern Recogn. 31, 283–293 (1998)CrossRefGoogle Scholar
  26. 26.
    Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. Kluwer Acadamic Press, Amsterdam (1979)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.BakuAzerbaijan

Personalised recommendations