Split of Composite Components for Distributed Applications

  • Ansgar Radermacher
  • Önder Gürcan
  • Arnaud Cuccuru
  • Sébastien Gérard
  • Brahim Hamid
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 311)


Composite structures as in UML are a way to ease the development of complex applications. Composite classes contain sub-components that are instantiated, interconnected and configured along with the composite. Composites may also contain operations and further attributes. Their deployment on distributed platforms is not trivial, since their sub-components might be allocated to different computing nodes. In this case, the deployment implies a split of the composite. In this chapter, we will motivate why composites need to be allocated to different nodes in some cases by examining the particular case of interaction components. We will also discuss several options to achieve the separation and their advantages and disadvantages including modeling restrictions for the classes.


Unified Modeling Language (UML) Composite stucture Distributed application Component-oriented approaches Architecture Description Language (ADL) Common Object Request Broker Architecture (CORBA) Flex-eWare Component Model (FCM) System modeling Socket connector Generic Interaction Support (GIS) 


  1. 1.
    Bálek D (2002) Connectors in software architectures. Ph. D. thesis, Charles University Prague, Faculty of Mathematics and Physics; Department of Software EngineeringGoogle Scholar
  2. 2.
    Bruneton E, Coupaye T, Leclercq M, Quéma V, Stefani JB (2006) The FRACTAL component model and its support in java: experiences with auto-adaptive and reconfigurable systems. Softw Pract Experience 36(11–12):1257–1284. doi: 10.1002/spe.v36:11/12
  3. 3.
    Bureš T, Plasil F (2004) Communication style driven connector configurations. Lect Notes Comput Sci 3026:102–116CrossRefGoogle Scholar
  4. 4.
    Clements P (1996) A survey of architecture description languages. In: Proceedings of the international workshop on software specification and design, pp 16–25. doi:10.1109/IWSSD.1996.501143Google Scholar
  5. 5.
    Coupaye T, Stefani JB (2007) Fractal component-based software engineering. In: Südholt M, Consel C (eds) Object-oriented technology. ECOOP 2006 workshop reader, Lecture notes in computer science, vol 4379. Springer, Berlin, pp 117–129. doi: 10.1007/978-3-540-71774-4_13
  6. 6.
    Feher P, Meszaros T, Lengyel L, Mosterman P (2013) A novel algorithm for flattening virtual subsystems in simulink models. In: Proceedings of the international conference on system science and engineering (ICSSE) 2013, pp 369–375. doi:10.1109/ICSSE.2013.6614693Google Scholar
  7. 7.
    Huang G, Yang J, Sun Y, Mei H (2008) Quality aware flattening for hierarchical software architecture models. In: Lee R (ed) Software engineering research, management and applications, studies in computational intelligence, vol 150. Springer, Berlin, pp 73–87. doi: 10.1007/978-3-540-70561-1_6
  8. 8.
    Jan M, Jouvray C, Kordon F, Kung A, Lalande J, Loiret F, Navas J, Pulou J, Pautet L, Radermacher A, Seinturier L (2011) Flex-eWare: a flexible model driven solution for designing and implementing embedded distributed systems. Softw Pract Experience 42(6)Google Scholar
  9. 9.
    Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change management. IEEE Trans Softw Eng 16(11):1293–1306. doi: 10.1109/32.60317 CrossRefGoogle Scholar
  10. 10.
    Lau KK, Wang Z (2007) Software component models. IEEE Trans Softw Eng 33(10):709–724CrossRefGoogle Scholar
  11. 11.
    Leveque T, Carlson J, Sentilles S, Borde E (2011) Flexible semantic-preserving flattening of hierarchical component models. In: Proceedings of the EUROMICRO conference on software engineering and advanced applications (SEAA) 2011, pp 31–38. doi: 10.1109/SEAA.2011.15
  12. 12.
    Malohlava M, Hnetynka P, Bures T (2013) SOFA 2 component framework and its ecosystem. Electronic notes in theoretical computer science. In: Proceedings of the 9th international workshop on formal engineering approaches to software components and architectures (FESCA) 2013. vol 295. pp 101–106. doi: 10.1016/j.entcs.2013.04.009
  13. 13.
    OMG (2006a) CORBA Component Model Specification, Version 4.0. OMG, OMG Document formal/2006-04-01Google Scholar
  14. 14.
    OMG (2006b) Deployment and Configuration of Component Based Distributed Applications, v4.0. OMG, OMG document formal/2006-04-02Google Scholar
  15. 15.
    OMG (2011a) DDS for Lightweight CCM, v1.1. OMG, OMG document ptc/2011-01-14Google Scholar
  16. 16.
    OMG (2011b) Unified Modeling Language: Superstructure, Version 2.4.1. OMG, OMG Document formal/2011-08-06Google Scholar
  17. 17.
    OMG (2013) Unified Component Model for Distributed, Real-Time and Embedded Systems, Request For Proposal Draft. OMG, OMG document mars/13-05-03Google Scholar
  18. 18.
    Radermacher A, Cuccuru A, Gerard S, Terrier F (2009) Generating execution infrastructures for component-oriented specifications with a model driven toolchain—a case study for MARTE’s GCM and real-time annotation. In: Proceedings of the international conference on generative programming and component engineering (GPCE) 2009, ACM press, pp 127–136Google Scholar
  19. 19.
    Robert S, Radermacher A, Seignole V, Gérard S, Watine V, Terrier F (2005) Enhancing interaction support in the CORBA component model. In: Rettberg A, Zanella MC, Rammig FJ (eds) From Specification to Embedded Systems Application, Springer, IFIP On-Line Library in Computer Science: International Embedded Systems Symposium (IESS), pp 137–146Google Scholar
  20. 20.
    Venkatesh Prasad K, Broy M, Krueger I (2010) Scanning advances in aerospace and automobile software technology. Proc IEEE 98(4):510–514. doi: 10.1109/JPROC.2010.2041835 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ansgar Radermacher
    • 1
  • Önder Gürcan
    • 1
  • Arnaud Cuccuru
    • 1
  • Sébastien Gérard
    • 1
  • Brahim Hamid
    • 2
  1. 1.CEA LIST, Laboratory of Model Driven Engineering for Embedded SystemsGif-sur-YvetteFrance
  2. 2.IRITUniversity of ToulouseToulouseFrance

Personalised recommendations