Optimal Component Selection for Energy-Efficient Systems

  • Matthias Sauppe
  • Thomas Horn
  • Erik Markert
  • Ulrich Heinkel
  • Hans-Werner Sahm
  • Klaus-Holger Otto
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 311)


Microelectronics have developed very fast in the past. The design process of those systems is getting more and more complex and new design methods have to be applied continuously. One main observation is the increasing design level over time, hence, the re-use of components is getting more important. A key challenge of IC design is the selection of a system architecture which fulfills all requirements in terms of data throughput, area, timing, power and cost. We present a problem class for the optimal component selection in order to assist in selecting the best available alternatives. We will show how to express top-level constraints and optimisation targets including dependencies between components. In addition, heuristic solving algorithms will be presented. The evaluation section shows that the presented algorithms perform well on typical problem sets. Using a framework for evolutionary algorithms results in additional speedup.


Component selection problem Design Space Exploration (DSE) System level High abstraction level System integration Energy efficiency Heuristic algorithm Optimization Evolutionary algorithm Local search NP-completeness 



This book chapter is part of the ENERSAVE research project, which is funded by the German ministry of research, BMBF, under the registration number 16BE1100.


  1. 1.
    Benhamou F, Goualard F (2000) Universally quantified interval constraints. In: Proceedings of the 6th international conference on principles and practice of constraint programming, Springer, pp 67–82Google Scholar
  2. 2.
    Engelbrecht AP (2007) Computational intelligence: an introduction, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Fortin FA, De Rainville FM, Gardner MA, Parizeau M, Gagné C (2012) DEAP: Evolutionary algorithms made easy. J Mach Learn Res 13:2171–2175MATHMathSciNetGoogle Scholar
  4. 4.
    Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, New YorkMATHGoogle Scholar
  5. 5.
    Gelle E, Faltings B (2003) Solving mixed and conditional constraint satisfaction problems. Constraints 8(2):107–141. doi: 10.1023/A:1022394531132 CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Mackworth AK (1985) Constraint satisfaction. Technical report, University of British Columbia, Vancouver, BC, Canada,
  7. 7.
    Mittal S, Falkenhainer B (1990) Dynamic constraint satisfaction. In: Proceedings of the 8th national conference on artificial intelligence, pp 25–32Google Scholar
  8. 8.
    Mouhoub M, Sukpan A (2007) Solving conditional and composite constraint satisfaction problems. In: Proceedings of the 2007 ACM symposium on applied computing (SAC), ACM, New York, USA, pp 336–337. doi: 10.1145/1244002.1244082
  9. 9.
    Nielsen J (1998) Nielsen’s law of internet bandwidth.
  10. 10.
    Pande J, Garcia CJ, Pant D (2013) Optimal component selection for component based software development using pliability metric. SIGSOFT Softw Eng Notes 38(1):1–6. doi: 10.1145/2413038.2413044 CrossRefGoogle Scholar
  11. 11.
    Pross U, Markert E, Langer J, Richter A, Drechsler C, Heinkel U (2008) A platform for requirement based formal specification. In: Proceedings of the forum on specification and design languages (FDL) 2008, ECSI, IEEE, pp 237–238. doi: 10.1109/FDL.2008.4641453
  12. 12.
    Proß U, Kröber K, Heinkel U (2010) Abhängigkeitsanalyse und Parameterberechnung auf Spezifikationsebene. In: Dietrich M (ed) Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV), Fraunhofer, pp 197–206Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthias Sauppe
    • 1
  • Thomas Horn
    • 1
  • Erik Markert
    • 1
  • Ulrich Heinkel
    • 1
  • Hans-Werner Sahm
    • 2
  • Klaus-Holger Otto
    • 2
  1. 1.Chair for Circuit and System DesignTechnische Universität ChemnitzChemnitzGermany
  2. 2.Alcatel-Lucent AGNurembergGermany

Personalised recommendations