Skip to main content

Reactions of Amino Acids with Acids

  • 1549 Accesses

Abstract

In this chapter we consider reactions of amino acids with inorganic and organic acids. These reactions may result in salt formation when proton transfer from acid to amino acid takes place. However, in some cases transfer does not occur. In these cases either molecular adducts may be formed or they do not react at all. We divided the salts into three groups. The first group comprises of simple salts, where there is a cation of one type of amino acid and one type of anion. The second group is made up of salts with different types of dimeric cations: (1) (A…A+), (2) (A+…A+), and (3) (A+…A2+). The third group is made up of mixed salts with different cations, different anions, or both.

Keywords

  • Salts of amino acids
  • Crystal structure
  • Molecular structure
  • Vibrational spectra
  • Strong hydrogen bonds
  • Nonlinear optical crystals
  • Mixed salts with different anions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aakeröy CB, Bahra GS, Brown CR, Hitchcock PB, Patel Y, Seddon KR (1995) L-Proline 2,5-dihydroxybenzoic acid (1/1): a zwitterion co-crystal. Acta Chem Scand 49:762–767

    Google Scholar 

  • Aarthy A, Anitha K, Athimoolam S, Bahadur SA, Rajaram RK (2005) L-Asparaginium nitrate. Acta Crystallogr E61:o2042–o2044

    Google Scholar 

  • Adams MJ, Hodgkin DC, Raeburn UA (1970) Crystal structure of a complex of mercury(II) chloride and histidine hydrochloride. J Chem Soc A 2632–2635

    Google Scholar 

  • Adhikari S, Kar T (2012) Experimental and theoretical studies on physicochemical properties of L-leucine nitrate-a probable nonlinear optical material. J Cryst Growth 356:4–9

    CAS  Google Scholar 

  • Adhikari S, Kar T (2013) Experimental and theoretical characterization of semiorganic nonlinear optical material L-leucine hydrobromide. Mater Res Bull 48:1612–1617

    CAS  Google Scholar 

  • Adhikari S, Seth SK, Kar T (2013) Structural studies and physicochemical properties of l-valine hydrochloride monohydrate. CrystEngComm 15:7372–7379

    CAS  Google Scholar 

  • Aggarwal MD, Choi J, Wang WS, Bhat K, Lal RB, Shields AD, Penn BG, Frazier DO (1999) Solution growth of a novel nonlinear optical material: L-histidine tetrafluoroborate. J Cryst Growth 204:179–182

    CAS  Google Scholar 

  • Aggarwal MD, Stephens J, Barta AK, Lal RB (2003) Bulk crystal growth and characterization of semiorganic nonlinear optical materials. J Optoelectron Adv Mater 5(3):555–562

    CAS  Google Scholar 

  • Ahmed AB, Feki H, Abid Y, Boughzala H, Mlayah A (2008) Structural, vibrational and theoretical studies of L-histidine bromide. J Mol Struct 888:180–186

    Google Scholar 

  • Ahmed AB, Feki H, Abid Y, Boughzala H, Mlayah A (2009) Crystal structure, vibrational spectra and theoretical studies of L-histidinium dihydrogen phosphate-phosphoric acid. J Mol Struct 920:1–7

    Google Scholar 

  • Ahmed AB, Feki H, Abid Y, Boughzala H, Minot C (2010) Crystal studies, vibrational spectra and non-linear optical properties of L-histidine chloride monohydrate. Spectrochim Acta A 75:293–298

    Google Scholar 

  • Ahmed AB, Elleuch N, Feki H, Abid Y, Minot C (2011) Vibrational spectra and non linear optical properties of L-histidine oxalate: DFT studies. Spectrochim Acta A 79:554–561

    Google Scholar 

  • AIP (1993) Aleksei Aleksandrovich Shternberg (1911-1993). Crystallogr Rep 38:585–586

    Google Scholar 

  • Akhmanov SA, Kovrigin AI, Kolosov VA, Piskarskas AS, Fadeev VV, Khokhlov RV (1966) Tunable optical parametric oscillator on a KDP crystal. JETP Lett 3:372–378 (In Russian)

    CAS  Google Scholar 

  • Akkurt M, Özütrk S, Ramajothi J, Büyükgüngör O, Dhanuskodi S (2004) L-Histidinium tetrafluorosuccinate. Acta Crystallogr E60:o481–o483

    Google Scholar 

  • Alagar M, Krishnakumar RV, Nandhini MS, Natarajan S (2001a) L-Alanine maleate. Acta Crystallogr E57:o855–o857

    Google Scholar 

  • Alagar M, Krishnakumar RV, Natarajan S (2001b) L-Phenylalaninium maleate. Acta Crystallogr E57:o968–o970

    Google Scholar 

  • Alagar M, Krishnakumar RV, Mostad A, Natarajan S (2001c) DL-Valinium maleate at 150K. Acta Crystallogr E57:o1102–o1104

    Google Scholar 

  • Alagar M, Krishnakumar RV, Mostad A, Natarajan S (2002a) Bis(DL-serinium) oxalate dihydrate. Acta Crystallogr E58:o114–o116

    Google Scholar 

  • Alagar M, Krishnakumar RV, Mostad A, Natarajan S (2002b) DL-Methioninium maleate. Acta Crystallogr E58:o396–o398

    Google Scholar 

  • Alagar M, Nandhini MS, Krishnakumar RV, Mostad A, Natarajan S (2003a) DL-Phenylalaninium maleate at 123K. Acta Crystallogr E59:o209–o211

    Google Scholar 

  • Alagar M, Krishnakumar RV, Nandhini MS, Cameron TS, Natarajan S (2003b) Bis(DL-aspartic acid) oxalate. Acta Crystallogr E59:o108–o110

    Google Scholar 

  • Alagar M, Krishnakumar RV, Rajagopal K, Nandhini MS, Natarajan S (2003c) L-Phenylalanine fumaric acid. Acta Crystallogr E59:o952–o954

    Google Scholar 

  • Alagar M, Krishnakumar RV, Nandhini MS, Natarajan S (2003d) DL-Valine-fumaric acid (2/1). Acta Crystallogr E59:o857–o859

    Google Scholar 

  • Alagar M, Nandhini MS, Krishnakumar RV, Ravikumar K, Natarajan S (2004) DL-Valine-succinic acid (2/1). Acta Crystallogr E60:o1009–o1011

    Google Scholar 

  • Alagar M, Krishnakumar RV, Parimala Devi P, Natarajan S (2005) L-Phenylalanine L-phenylalaninium malonate. Acta Crystallogr E61(4):o992–o994

    Google Scholar 

  • Albers J (1988) Betaine compounds – a new family with ferroelectric and incommensurate phase. Ferroelectrics 78(1):3–10

    Google Scholar 

  • Albers J, Klöpperpieper A, Rother HJ, Haussühl S (1988) Ferroelectricity in betaine phosphite. Ferroelectrics 81(1):27–30

    Google Scholar 

  • Aleksandrov KS, Haussühl S (1975) Elastic and thermoelastic properties of L-glutamic acid hydrochloride. Z Kristallogr 142:328–331

    Google Scholar 

  • Al-Karaghouli AR, Koetzle TF (1975) Neutron diffraction study of L-phenylalanine hydrochloride. Acta Crystallogr B31:2461–2465

    CAS  Google Scholar 

  • Al-Karaghouli AR, Cole FE, Lehmann MS, Miskell CF, Verbist JJ, Koetzle TF (1975) Precision neutron diffraction structure determination of protein and nucleic acid components. XVII. Molecular and crystal structure of the amino acid glycine hydrochloride. J Chem Phys 63:1360–1366

    CAS  Google Scholar 

  • Almeida JMA, Miranda MAR, Remédios CMR, Melo FE, Freire PTC, Sasaki JM, Cardoso LP, dos Santos AO, Kycia S (2003) Piezoelectric coefficients of L-arginine hydrochloride monohydrate obtained by X-ray multiple diffraction using synchrotron radiation. J Appl Crystallogr 36:1348–1351

    CAS  Google Scholar 

  • Almeida JMA, Miranda MAR, Avanci LH, de Menezes AS, Cardoso LP, Sasaki JM (2006) Piezoelectric coefficients d14, d16, d34 and d36 of an L-arginine hydrochloride monohydrate crystal by X-ray three-beam diffraction. J Synchrotron Radiat 13:435–439

    CAS  PubMed  Google Scholar 

  • Amalanathan M, Hubert Joe I, Prabhu SS (2010) Charge transfer interaction and terahertz studies of a nonlinear optical L-glutamine picrate: a DFT study. J Phys Chem A114:13055–13064

    Google Scholar 

  • Amalanathan M, Hubert Joe I, Rastogi VK (2011a) Molecular structure, vibrational spectra and nonlinear optical properties of L-valine hydrobromide: DFT study. J Mol Struct 985:48–56

    CAS  Google Scholar 

  • Amalanathan M, Hubert Joe I, Rastogi VK (2011b) Density functional theory studies on molecular structure and vibrational spectra of NLO crystal L-phenylalanine phenylalaninium nitrate for THz application. J Mol Struct 1006:513–526

    CAS  Google Scholar 

  • Ambujam K, Rajarajan K, Selvakumar S, Vetha Potheher I, Joseph GP, Sagayaraj P (2006) Growth and characterization of a novel NLO crystal bis-glycine hydrogen chloride (BGHC). J Cryst Growth 286(2):440–444

    CAS  Google Scholar 

  • Ambujam K, Rajarajan K, Selvakumar S, Madhavan J, Mohamed G, Sagayaraj P (2007) Growth and characterization of gel grown single crystals of bis-glycine hydrogen chloride (BGHC). Opt Mater 29(6):657–662

    CAS  Google Scholar 

  • Anandan P, Jayavel R (2011) Crystal growth and characterization of semiorganic single crystals of L-histidine family for NLO applications. J Cryst Growth 322:69–73

    CAS  Google Scholar 

  • Anandan P, Saravanan T, Vasudevan S, Mohan Kumar R, Jayavel R (2010a) Crystal growth and characterization of L-tyrosine bromide (LTB) nonlinear optical single crystals. J Cryst Growth 312:837–841

    CAS  Google Scholar 

  • Anandan P, Parthipan G, Saravanan T, Mohan Kumar R, Bhagavannarayana G, Jayavel R (2010b) Crystal growth, structural and optical characterization of a semi-organic single crystal for frequency conversion applications. Physica B 405:4951–4956

    CAS  Google Scholar 

  • Anandan P, Saravanan T, Parthipan G, Mohan Kumar R, Bhagavannarayana G, Ravi G, Jayavel R (2011) Crystal growth, structural and thermal studies of amino acids admixture L-arginine phosphate monohydrate single crystals. Solid State Sci 13:915–922

    CAS  Google Scholar 

  • Anandan P, Vetrivel S, Jayavel R, Vedhi C, Ravi G, Bhagavannarayana G (2012a) Crystal growth, structural and photoluminescence studies of L-tyrosine hydrobromide semi organic single crystal. J Phys Chem Solids 73:1296–1301

    CAS  Google Scholar 

  • Anandan P, Jayavel R, Saravanan T, Parthipan G, Vedhi C, Mohan Kumar R (2012b) Crystal growth and characterization of L-hydrochloride monohydrate semiorganic optical single crystals. Opt Mater 34:1225–1230

    CAS  Google Scholar 

  • Anandan P, Parthipan G, Pazhanivel K, Ravi G, Jayavel R (2014) Growth and characterization of potassium halides mixed L-arginine phosphate monohydrate semi organic nonlinear optical single crystals. Optik 125:8–10

    CAS  Google Scholar 

  • Anandha Babu G, Mohanapriya SK, Ramasamy P, Chandramohan A (2011) Studies on the synthesis, growth, crystal structure, and physical properties of a novel nonlinear optical: glycine 3,5-dihydroxybenzoic acid. J Cryst Growth 318:1021–1025

    CAS  Google Scholar 

  • Anbuchezhiyan M (2010) Growth and characterization of some nonlinear optical crystals of amino acid complexes. PhD thesis, SRM University, Kattankulathur

    Google Scholar 

  • Anbuchezhiyan M, Ponnusamy S, Muthamizhchelvan C (2009a) Synthesis and characterization of a new organic nonlinear optical crystal: L-Phenylalaninium maleate. Spectrochim Acta A 74:917–923

    CAS  Google Scholar 

  • Anbuchezhiyan M, Ponnusamy S, Muthamizhchelvan C (2009b) Synthesis, characterization and nonlinear optical studies of L-leucinium oxalate: a single crystal. Optoelectron Adv Mater-Rapid Commun 3(11):1161–1167

    CAS  Google Scholar 

  • Andersen L, Lindqvist O, Moret J (1983) Diglycine-telluric acid monohydrate, Te(OH)6.2NH2CH2COOH.H2O. Acta Crystallogr C39:57–58

    CAS  Google Scholar 

  • Ando O, Ashida T, Sasada Y, Kakudo M (1967) The crystal structure of L-valine hydrochloride. Acta Crystallogr 23:172–173

    CAS  PubMed  Google Scholar 

  • Andrade LCR, Costa MRR, Paixão JA, Agostinho Moreira J, Almeida A, Chaves MR, Klopperpieper A (1999) Crystal structure of glycinium arsenate. Z Kristallogr NCS 214:535–536

    CAS  Google Scholar 

  • Andrade LCR, Costa MRR, Paixão JA, Santos ML, Agostinho Moreira J, Chaves MR, Almeida A (2002) Crystal structure of trimethylglycine 2-hydroxy-1,2,3-propanetricarboxylic acid (1:1) adduct, C6O7H8.C5NO2Hll. Z Kristallogr NCS 217:77–78

    CAS  Google Scholar 

  • Andreas LB, Mehta AK, Mehta MA (2007) Determination of global structure from distance and orientation constraints in biological solids using solid-state NMR spectroscopy. J Am Chem Soc 129:15233–15239

    CAS  PubMed  Google Scholar 

  • Andreev RB, Vetrov KV, Voitsekhovskii VN, Volosov VD, Nikiforuk IV, Nikolaeva BP, Yakobson VE (1990) Growth of d-LAP crystals and investigation of its basic nonlinear optical properties. Bull AS USSR Ser Phys 54:2491–2493 (In Russian)

    CAS  Google Scholar 

  • Andreeva NV, Gavrilova LA, Ennan AA (1983) Hexafluorosilicates of amino acids. Zhurn Neorg Khimii 28(7):1720–1724 (In Russian)

    CAS  Google Scholar 

  • Andriyevsky B, Czapla Z (2004) Refractive and dilative ferroelectric anomalies of DGN crystals. Ferroelectrics 302:39–41

    CAS  Google Scholar 

  • Andriyevsky B, Czapla Z, Kardash V, Dacko S, Dumka Y, Kurlyak V (2001) Optical and dilatative properties of diglycine nitrate crystals. Ukr J Phys Opt 2(4):211–216

    Google Scholar 

  • Andriyevsky B, Czapla Z, Dumka Y, Dacko S, Kardash V (2002) Dilatative and refractive properties of diglycine nitrate crystals in the range of phase transition. Mater Sci Eng B95(1):14–18

    CAS  Google Scholar 

  • Andriyevsky B, Ciepluch-Trojanek W, Romanyuk M, Patryn A, Jaskolski M (2005) Band structure and optical properties of diglycine nitrate crystal. Physica B364(1–4):78–84

    Google Scholar 

  • Angeli Mary PA, Dhanuskodi S (2001) EPR and optical absorption studies of VO2+ doped L-arginine phosphate monohydrate single crystals-part I. Spectrochim Acta A 57:2345–2353

    CAS  Google Scholar 

  • Angelova O, Velikova V, Kolev T, Radomirska V (1996) Crystalline complexes involving amino acids. I. L-arginine hydrogen squarate. Acta Crystallogr C52(12):3252–3256

    CAS  Google Scholar 

  • Anitha K, Rajaram RK (2005) DL-Phenylalanine DL-phenylalaninium picrate. Acta Crystallogr E61:o589–o591

    Google Scholar 

  • Anitha K, Sridhar B, Rajaram RK (2004a) L-Valinium picrate. Acta Crystallogr E60:o1530–o1532

    Google Scholar 

  • Anitha K, Annavenus S, Sridhar B, Rajaram RK (2004b) DL-Valine DL-valinium picrate. Acta Crystallogr E60:o1722–o1724

    Google Scholar 

  • Anitha K, Sridhar B, Rajaram RK (2004c) β-Alanine β-alaninium picrate. Acta Crystallogr E60:o1630–o1632

    Google Scholar 

  • Anitha K, Athimoolam S, Rajaram RK (2005a) L-Asparaginium picrate. Acta Crystallogr E61:o1463–o1465

    Google Scholar 

  • Anitha K, Athimoolam S, Rajaram RK (2005b) L-leucine L-leucinium picrate. Acta Crystallogr E61(6):o1604–o1606

    Google Scholar 

  • Anitha K, Athimoolam S, Natarajan S (2006a) L-Prolinium picrate and 2-methylpyridinium picrate. Acta Crystallogr C62:o567–o570

    CAS  Google Scholar 

  • Anitha K, Athimoolam S, Rajaram RK (2006b) DL-methionine DL-methioninium picrate. Acta Crystallogr E62(1):o8–o10

    Google Scholar 

  • Antipin MY, Lyssenko KA, Suponitsky KY, Karapetyan HA, Petrosyan AM (2006) Infrared and Raman spectra, structure and electron density distribution of L-arginine dioxalate. J Mol Struct 792–793:194–200

    Google Scholar 

  • Aoki K, Nagano K, Iitaka Y (1971) The crystal structure of L-arginine phosphate monohydrate. Acta Crystallogr B27:11–23

    Google Scholar 

  • Aravindan A, Srinivasan P, Vijayan N, Gopalakrishnan R, Ramasamy P (2007) Investigations on the growth, optical behaviour and factor group of an NLO crystal: L-alanine alaninium nitrate. Cryst Res Technol 42(11):1097–1103

    CAS  Google Scholar 

  • Aravindan A, Srinivasan P, Vijayan N, Gopalakrishnan R, Ramasamy P (2008) A comparative study on the growth and characterization of nonlinear optical amino acid crystal: L-Alanine(LA) and L-alanine alaninium nitrate (LAAN). Spectrochim Acta A71(2):297–304

    Google Scholar 

  • Arjunan S, Mohan Kumar R, Mohan R, Jayavel R (2008a) Nucleation kinetics and growth aspects of organic nonlinear optical L-arginine trifluoroacetate crystals. Cryst Res Technol 43:417–422

    CAS  Google Scholar 

  • Arjunan S, Mohan Kumar R, Mohan R, Jayavel R (2008b) Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal. Mater Res Bull 43:2018–2025

    CAS  Google Scholar 

  • Arjunan S, Bhaskaran A, Mohan Kumar R, Mohan R, Jayavel R (2010) Effect of rare-earth dopants on the growth and structural, optical, electrical and mechanical properties of L-arginine phosphate single crystals. J Alloy Compd 506:784–787

    CAS  Google Scholar 

  • Arjunan S, Bhaskaran A, Mohan Kumar R, Mohan R, Jayavel R (2012a) Effect of iodic acid dopant on the growth and structural, optical, and electrical properties of L-arginine phosphate single crystals. Mater Manuf Process 27:49–52

    CAS  Google Scholar 

  • Arjunan V, Mariusz Marchewka K, Kalaivani M (2012b) Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite. Spectrochim Acta A 96:744–758

    CAS  Google Scholar 

  • Arkhipov SG, Zakharov BA, Boldyreva EV (2013) Semi-maleate of L- and DL-serinium: the first example of chiral and racemic serinium salts with the same composition and stoichiometry. Acta Crystallogr C69:517–521

    Google Scholar 

  • Arun KJ, Jayalekshmi S (2008a) Growth and characterization of glycinium oxalate crystals for nonlinear optical applications. Optoelectron Adv Mater-Rapid Commun 2(11):701–706

    CAS  Google Scholar 

  • Arun KJ, Jayalekshmi S (2008b) Studies on the microstructure and microhardness of L-alaninium oxalate single crystals for optical devices. Optoelectron Adv Mater-Rapid Commun 2(12):802–805

    CAS  Google Scholar 

  • Arun KJ, Jayalekshmi S (2009) Growth and characterization of nonlinear optical single crystals of L-alaninium oxalate. J Miner Mater Charact Eng 8(8):635–646

    Google Scholar 

  • Arun KJ, Jayalekshmi S (2011) Investigation on the nonlinear optical properties of glycinium oxalate single crystals. Optoelectron Lett 7(2):136–138

    Google Scholar 

  • Aruna S, Anuradha A, Thomas PC, Mohamed MG, Rajasekar SA, Vimalan M, Mani G, Sagayaraj P (2007a) Growth, optical and thermal studies of L-arginine perchlorate-A promising non-linear optical single crystal. Indian J Pure Appl Phys 45:524–528

    CAS  Google Scholar 

  • Aruna S, Bhagavannarayana G, Palanisamy M, Thomas PC, Varghese B, Sagayaraj P (2007b) Growth, morphological, mechanical and dielectric studies of semi organic NLO single crystal: L-argininium perchlorate. J Cryst Growth 300:403–408

    CAS  Google Scholar 

  • Aruna S, Bhagavannarayana G, Sagayaraj P (2007c) Investigation on the physicochemical properties of nonlinear optical (NLO) single crystal: L-histidinium dinitrate. J Cryst Growth 304:184–190

    CAS  Google Scholar 

  • Aruna S, Vimalan M, Thomas PC, Thamizharasan K, Ambujam K, Madhavan J, Sagayaraj P (2007d) Growth and characterization of semi organic nonlinear optical LHPCL crystals. Cryst Res Technol 42:180–185

    CAS  Google Scholar 

  • Arunmozhi G, Jayavel R, Subramanian C (1997) Experimental determination of metastable zone width, induction period and interfacial energy of LAP family crystals. J Cryst Growth 178:387–392

    CAS  Google Scholar 

  • Arunmozhi G, De M, Gomes E (2004) Metastability and crystal growth kinetics on L-arginine phosphate. Cryst Growth Technol 39:34–39

    CAS  Google Scholar 

  • Asaji T, Seliger J, Žagar V, Sekiguchi M, Watanabe J, Gotoh K, Ishida H, Vrtnik S, Dolinšek J (2007) Phase transition and temperature dependent electronic state of an organic ferroelectric, phenazine-chloranilic acid (1:1). J Phys: Condens Matter 19:226203

    Google Scholar 

  • Athimoolam S, Natarajan S (2007) Hydrogen-bonding features in the 1:2 adduct of 4-aminobenzoic acid and L-proline. Acta Crystallogr C63:o283–o286

    Google Scholar 

  • Atwood JL, Dalgarno SJ, Hardie MJ, Raston CL (2005) Selective single crystal complexation of L- or D-leucine by p-sulfonatocalix[6]arene. Chem Commun 337–339

    Google Scholar 

  • Avdienko KI et al (1980) Lithium iodate. Growth of crystals, their properties and application. (Edited by Bogdanov S.V.). Novosibirsk, Nauka (In Russian)

    Google Scholar 

  • Averbuch-Pouchot MT (1988) Crystal structure of a new telluric acid adduct: Te(OH)6.2(CH3NHCH2COOH). Z Kristallogr 183:285–291

    CAS  Google Scholar 

  • Averbuch-Pouchot MT (1993a) Structures of glycinium phosphite and glycylglycinium phosphite. Acta Crystallogr C49:815–818

    CAS  Google Scholar 

  • Averbuch-Pouchot MT (1993b) Crystal structure of N-methylglycinium mono-hydrogen-phosphite, (CH3NH2CH2COOH)(HPO3H). Z Kristallogr 207:149–150

    CAS  Google Scholar 

  • Averbuch-Pouchot MT (1993c) Crystal structure of 3-ammonium propionic acid monohydrogen-phosphite, (H3NC2H4COOH)(HPO3H). Z Kristallogr 208(2):257–258

    CAS  Google Scholar 

  • Averbuch-Pouchot MT (1993d) Crystal structure of L-histidinium phosphite and a structure reinvestigation of the monoclinic form of L-histidine. Z Kristallogr 207:111–120

    CAS  Google Scholar 

  • Averbuch-Pouchot MT, Durif A, Guitel JC (1988a) Structure of glycine monophosphate and glycine cyclo-triphosphate. Acta Crystallogr C44:99–102

    CAS  Google Scholar 

  • Averbuch-Pouchot MT, Durif A, Guitel JC (1988b) Structure of glycine cyclo-tetraphosphate. Acta Crystallogr C44:888–890

    CAS  Google Scholar 

  • Averbuch-Pouchot MT, Durif A, Guitel JC (1988c) Structures of β-alanine, DL-alanine and sarcosine monophosphates. Acta Crystallogr C44:1968–1972

    CAS  Google Scholar 

  • Averbuch-Pouchot MT, Durif A, Guitel JC (1988d) Structure of L-histidinium dihydrogenmonophosphate monohydrate. Acta Crystallogr C44:890–892

    CAS  Google Scholar 

  • Ayyar RR (1968) Crystal structure of L(+)-cysteine hydrochloride monohydrate. Z Kristallogr 126:227–239

    Google Scholar 

  • Ayyar RR, Chandrasekharan R (1967) Crystal structure of L-tryptophan hydrobromide. Curr Sci 36(6):139–143

    CAS  Google Scholar 

  • Ayyar RR, Srinivasan R (1965) Crystal structure of L(+)-cysteine hydrochloride monohydrate. Curr Sci 34(15):449–450

    CAS  Google Scholar 

  • Bahadur SA (1992) Crystal structure analyses of aminoacid inorganic acid complexes. PhD Thesis, Madurai Kamaraj University, Madurai

    Google Scholar 

  • Bahadur SA, Athimoolam S (2007) DL-Methioninium dihydrohenphosphate. Acta Crystallogr E63:o1952–o1954

    Google Scholar 

  • Bahadur SA, Athimoolam S (2009) Chain C(5), C(8), C2 1(4) and C1 2(4) motifs in DL-histidinium perchlorate. Anal Sci X-Ray Struct Anal Online 25:15–16

    CAS  Google Scholar 

  • Bahadur SA, Rajaram RK (1995a) Crystal structure of DL-alanine nitrate. Z Kristallogr 210:279–281

    CAS  Google Scholar 

  • Bahadur SA, Rajaram RK (1995b) Crystal and molecular structure of DL-aspartic acid nitrate monohydrate. Z Kristallogr 210:276–278

    CAS  Google Scholar 

  • Bahadur SA, Rajaram RK, Nathaji M (1991) Structure of diprotonated DL-histidinium dinitrate. Acta Crystallogr C47:1420–1423

    CAS  Google Scholar 

  • Bahadur SA, Rajaram RK, Nethaji M, Natarajan S (1993) Crystal structure of L-leucine nitrate. Z Kristallogr 203:93–100

    CAS  Google Scholar 

  • Bakke O, Mostad A (1980) The structure and conformation of tryptophan in the crystal of the pure racemic compound and the hydrogen oxalate. Acta Chem Scand B34:559–570

    CAS  Google Scholar 

  • Balakrishnan T, Ramamurthi K (2009) Crystal growth, structural, optical, mechanical and thermal properties of a new nonlinear optical single crystal: L-ornithine monohydrochloride. Spectrochim Acta A 72:269–273

    CAS  Google Scholar 

  • Balakrishnan T, Ramamurthi K, Thamotharan S (2013) Glycine-phthalic acid (1/1). Acta Crystallogr E69:o57

    Google Scholar 

  • Balashova EV, Lemanov VV (2003) Dielectric and acoustic properties of some betaine and glycine compounds. Ferroelectrics 285:179–205

    CAS  Google Scholar 

  • Balashova EV, Lemanov VV, Albers J, Klöpperpieper A (1998) Acoustic properties of betaine phosphite in the vicinity of phase transitions. Phys Solid State 40:995–1000

    Google Scholar 

  • Balashova EV, Lemanov VV, Pankova GA (2001) Acoustic and dielectric anomalies in the temperature range of a ferroelectric phase transition in glycine phosphate crystals. Phys Solid State 43:1328–1335

    CAS  Google Scholar 

  • Balasubramanian D, Jayavel R, Murugakoothan P (2009) Studies on the growth aspects of organic L-alanine maleate: a promising nonlinear optical crystal. Nature 1(3):216–221

    CAS  Google Scholar 

  • Balasubramanian D, Murrugakoothan P, Jayavel R (2010) Synthesis, growth and characterization of organic nonlinear optical bis-glycine maleate (BGM) single crystals. J Cryst Growth 312:1855–1859

    CAS  Google Scholar 

  • Baran J, Śledź M, Jakubas R, Bator G (1977) Ferroelectric phase transition in deuterated glycinium phosphate crystals. Phys Rev B55:169–172

    Google Scholar 

  • Baran J, Barnes AJ, Ratajczak H (1994) Polarized Raman spectra of diglycine nitrate single crystal in the lattice-vibration region. J Mol Struct 325:71–75

    CAS  Google Scholar 

  • Baran J, Drozd M, Lis T, Sledz M, Barnes AJ, Ratajczak H (1995a) Crystal structure and vibrational spectra of betaine hydrogen selenate monohydrate. J Mol Struct 372:29–40

    CAS  Google Scholar 

  • Baran J, Barnes AJ, Ratajczak H (1995b) Polarized infrared and Raman spectra of diglycine nitrate single crystal. Spectrochim Acta A51(2):197–214

    Google Scholar 

  • Baran J, Drozd M, Głowiak T, Śledź M, Ratajczak H (1995c) Crystal structure, phase transitions and vibrational spectra of bis(betaine) nitrate. J Mol Struct 372:131–144

    CAS  Google Scholar 

  • Baran J, Drozd M, Lis T, Ratajczak H (1995d) and vibrational spectra of the tetra(betaine) selenate crystal. J Mol Struct 372(2–3):151–159

    CAS  Google Scholar 

  • Baran J, Drozd M, Lis T, Ratajczak H (1995e) Phase transitions in the tetra(betaine) selenate crystal. J Mol Struct 372(2–3):145–150

    CAS  Google Scholar 

  • Baran J, Bator G, Jakubas R, Śledź M (1996) Dielectric dispersion and vibrational studies of a new ferroelectric, glycinium phosphate crystal. J Phys Condens Matter 8:10647–10658

    CAS  Google Scholar 

  • Baran J, Czapla Z, Drozd MK, Ilczyszyn MM, Marchewka M, Ratajczak H (1997a) Polarised FTIR and Raman spectra of betaine phosphite single crystal I. Paraelectric phase. J Mol Struct 403:17–37

    CAS  Google Scholar 

  • Baran J, Barnes AJ, Marchewka MK, Pietrashko A, Ratajczak H (1997b) Structure and vibrational spectra of the bis(betaine)-selenic acid molecular crystal. J Mol Struct 416(1–3):33–42

    CAS  Google Scholar 

  • Baran J, Barnes AJ, Engelen B, Panthöfer M, Pietraszko A, Ratajczak H, Sledz M (2000) Structure and polarized IR and Raman spectra of the solid complex betaine-trichloroacetic acid. J Mol Struct 550:21–41

    Google Scholar 

  • Baran J, Łukaszewicz K, Pietraszko A, Śledź M (2002) Structural investigations of the ferroelectric glycinium hydrogenphosphite (GPI) and its deuterated analogue (DGPI) I. X-ray diffraction studies of the crystal structure of paraelectric and ferroelectric phases. J Mol Struct 611:155–168

    CAS  Google Scholar 

  • Baran J, Trzebiatowska M, Ratajczak H (2004) Polarised IR and Raman spectra of monoglycine dihydrogenphosphate single crystal. J Mol Struct 708:127–144

    CAS  Google Scholar 

  • Baran J, Drozd MA, Ratajczak H (2010) Polarised IR and Raman spectra of monoglycine nitrate single crystal. J Mol Struct 976:226–242

    CAS  Google Scholar 

  • Baran J, Barnes AJ, Ratajczak H (2012) The polarized IR and Raman spectra of the diglycine hydrochloride crystal. J Mol Struct 1009:55–68

    CAS  Google Scholar 

  • Baraniraj T, Philominathan P (2010) Growth and characterization of NLO based L-arginine maleate dihydrate single crystal. Spectrochim Acta A 75:74–76

    CAS  Google Scholar 

  • Barker CE, Eimerl D, Velsko SP (1991) Temperature-insensitive phase matching for second-harmonic generation in deuterated l-arginine phosphate. J Opt Soc Am B8:2481–2492

    Google Scholar 

  • Bass M, Franken PA, Hill AE, Peters CW, Weinreich G (1962a) Optical mixing. Phys Rev Lett 8(1):18

    Google Scholar 

  • Bass M, Franken PA, Ward JF, Weinreich G (1962b) Optical rectification. Phys Rev Lett 9(11):446–448

    CAS  Google Scholar 

  • Beja AM, Paixão JA, Silva MR, da Veiga LA (2000) Crystal structure of betainium perchlorate hydrate, [(CH3)3NCH2COOH]ClO4.H2O. Z Kristallogr NCS 215:581–582

    CAS  Google Scholar 

  • Belhouas R, Bouacida S, Boudaren C, Daran JC, Roisnel T (2012) (±)-Bis(1-carboxy-2-phenyl-ethanaminium) hexafluorosilicate(VI). Acta Crystallogr E68:o1791–o1792

    Google Scholar 

  • Bena Jothy V, Vijayakumar T, Sajan D, Jayakumar VS, Hubert Joe I (2006) Vibrational spectra and ab initio computations of sarcosinium oxalate monohydrate. Laser Phys 16:1242–1252

    Google Scholar 

  • Benali-Cherif N, Benguedouar L, Cherouana A, Bendjeddou L, Merazig H (2002) L-Histidinium dinitrate. Acta Crystallogr E58:o822–o824

    Google Scholar 

  • Bendheif L, Benali-Cherif N, Benguedouar L, Bouchouit K, Merazig H (2003) L-Valinium hydrogenphosphite. Acta Crystallogr E59:o141–o142

    Google Scholar 

  • Bennett I, Davidson AGH, Harding MM, Morrelle I (1970) The crystal structure of DL-histidine hydrochloride dihydrate. Acta Crystallogr B26:1722–1729

    Google Scholar 

  • Berrah F, Benali-Cherif N, Lamraoui H (2005) DL-Leucinium nitrate. Acta Crystallogr E61:o1517–o1519

    Google Scholar 

  • Bhaduri D, Saha NN (1979) Crystal and molecular structure of DL-lysine hydrochloride. J Cryst Mol Struct 9:311–316

    CAS  Google Scholar 

  • Bhagavannarayana G, Kumar S, Shakir M, Kushawaha SK, Maurya KK, Malhotra R, Rao KR (2010) Unidirectional growth of L-cysteine hydrochloride monohydrate: first time observation as nonlinear optical material and its characterization. J Appl Crystallogr 43:710–715

    CAS  Google Scholar 

  • Bhagavannarayana G, Riscob B, Shakir M (2011) Growth and characterization of L-leucine L-leucinium picrate single crystal: a new nonlinear optical material. Mater Chem Phys 126(1–2):20–23

    CAS  Google Scholar 

  • Bhar GC, Rudra AM, Datta PK, Roy UN, Wadhawan VK, Sasaki T (1995) A comparative study of laser second harmonic generation in some crystals. Pramana: J Phys 44:45–53

    CAS  Google Scholar 

  • Bhat H (1994) Growth and characterization of some novel crystals for nonlinear optical applications. Bull Mater Sci 17:1233–1249

    CAS  Google Scholar 

  • Bhat TN, Vijayan M (1976) X-ray studies on crystalline complexes involving amino acids. I. Crystal structure of L-lysine L-aspartate. Acta Crystallogr B32:891–895

    CAS  Google Scholar 

  • Bhat TN, Vijayan M (1977) X-ray studies of crystalline complexes involving amino acids. II. The crystal structure of L-arginine L-glutamate. Acta Crystallogr B33(6):1754–1759

    CAS  Google Scholar 

  • Bhat TN, Vijayan M (1978) X-ray studies of crystalline complexes involving amino acids. III. The structure of the twinned pseudosymmetric crystals of a complex between histidine and aspartic acid. Acta Crystallogr B34:2556–2565

    CAS  Google Scholar 

  • Bhatt H, Murli C, Garg N, Deo MN, Chitra R, Choudhury RR, Sharma SM (2012) High pressure phase transformations in bis(glycinium)oxalate-An infrared absorption study. Chem Phys Lett 532:57–62

    CAS  Google Scholar 

  • Bhattacharyya SC, Saha NN (1978a) Crystal and molecular structure of sarcosine hydrochloride. J Cryst Mol Struct 8(3):105–113

    CAS  Google Scholar 

  • Bhattacharyya SC, Saha NN (1978b) Crystal and molecular structure of disarcosine hydrobromide. J Cryst Mol Struct 8(5):209–215

    CAS  Google Scholar 

  • Blessing RH (1986) Hydrogen bonding and thermal vibrations in crystalline phosphate salts on histidine and imidazole. Acta Crystallogr B42:613–621, Erratum: B43:407 (19873)

    CAS  Google Scholar 

  • Blessing RH, McGandy EL (1972) ACA Abstr Papers (Winter), p 68 (Quoted from CSD, code: HISTPA)

    Google Scholar 

  • Blinc R, Jamšek-Vilfan M, Lahajnar G, Hajduković G (1970) NMR study of the ferroelectric transitions in diglycine nitrate and trissarcosine calcium chloride. J Chem Phys 52(12):6407–6411

    CAS  Google Scholar 

  • Book L, Carty AJ, Chieh C (1981) Five-coordinated halogenomercurate(II) complexes: crystal structures of bis(L-tryptophanium) trichloromercurate(II) and bis(D, L-homocysteine thiolactonium) tetrabromomercurate(II). Can J Chem 59:138–143

    CAS  Google Scholar 

  • Boopathi K, Rajesh P, Ramasamy P (2012) Investigation on growth, structural, optical, thermal, dielectric and mechanical properties of organic L-prolinium trichloroacetate single crystals. Mater Res Bull 47:2299–2305

    CAS  Google Scholar 

  • Botto IL (1987) Thermal and vibrational behaviour of Te(OH)6.2NH2CH2COOH.H2O. J Less-Common Met 128:47–55

    CAS  Google Scholar 

  • Bouchouit K, Sofiani Z, Benali-Cherif N, Bendheif L, Migalska-Zalas A, Kityk IV, Sahraoui B (2005) Third order nonlinear optical properties of hybrid mono crystals with n-conjugated systems. Transparent Optical Networks, 2005. Proc 2005 7th Intern Conf 2:367–371

    Google Scholar 

  • Braga D, Chelazzi L, Ciabatti I, Grepioni F (2013) From 3D channelled frameworks to 2D layered structures in molecular salts of L-serine and DL-serine with oxalic acid. New J Chem 37:97–104

    CAS  Google Scholar 

  • Briget Mary M, Umadevi M, Pandiarajan S, Ramakrishnan V (2004) Vibrational spectral studies of L-methionine L-methioninium perchlorate monohydrate. Spectrochim Acta A 60(11):2643–2651

    Google Scholar 

  • Briget Mary M, Umadevi M, Ramakrishnan V (2005) Vibrational spectral analysis of L-lysine L-lysinium dichloride nitrate. Spectrochim Acta A 61:3124–3130

    Google Scholar 

  • Briget Mary M, Sasirekha V, Ramakrishnan V (2006a) Vibrational spectral analysis of DL-valine DL-valinium and DL-methionine DL-methioninium picrates. Spectrochim Acta A 65:955–963

    Google Scholar 

  • Briget Mary M, Sasirekha V, Ramakrishnan V (2006b) Spectral investigations of amino acid picrates. Spectrochim Acta A 65(2):414–420

    CAS  Google Scholar 

  • Brsikyan NA, Andriasyan LH, Badalyan GR, Harutyunyan AV, Petrosyan AM, Ghazaryan VV (2012) Comparative morphology of dentinal tubules occlusion at the use of different desensitizing agents in experiment. New Armenian Med J 6(4):52–55

    Google Scholar 

  • Buerger MJ, Barney E, Hahn T (1956) The crystal structure of diglycine hydrobromide. Z Kristallogr 108:130–144

    CAS  Google Scholar 

  • Bugayong RR, Sequeira A, Chidambaram R (1972) A neutron diffraction study of the structure of L-lysine monohydrochloride dihydrate. Acta Crystallogr B28:3214–3219

    Google Scholar 

  • Bye E, Mostad A, Romming C (1973) Crystal structure of DL-tryptophan formate. Acta Chem Scand 27:471–484

    CAS  Google Scholar 

  • Cano FH, Martinez-Carrera S (1974) The crystal structure of diglycine sulphate monohydrate. Acta Crystallogr B30:2729–2732

    CAS  Google Scholar 

  • Capasso S, Mattia CA, Mazzarella L, Zagari A (1983) L-Lysine sulphate, C6H16N2O2 2+.SO4 2−: a novel conformation of the L-lysine side chain. Acta Crystallogr C39:281–283

    CAS  Google Scholar 

  • Caroline ML, Vasudevan S (2008) Growth and characterization of an organic nonlinear optical material: L-alanine alaninium nitrate. Mater Lett 62(15):2245–2248

    CAS  Google Scholar 

  • Caroline ML, Vasudevan S (2009) Growth and characterization of L-phenylalanine nitric acid, a new organic nonlinear optical material. Mater Lett 63:41–44

    Google Scholar 

  • Caroline ML, Prakash M, Geetha D, Vasudevan S (2011) Growth, structural, vibrational, optical, laser and dielectric aspects of L-alanine alaninium nitrate single crystal. Spectrochim Acta A 79(5):1936–1940

    CAS  Google Scholar 

  • Carvalho JF, Hernandes AC, Nunes FD, de Moraes LBOA, Misoguti L, Zilio ASC (1997) LAP single crystal growth free of microorganisms by an accurately controlled solvent evaporation technique. J Cryst Growth 173:487–491

    CAS  Google Scholar 

  • Chacko KK, Chandrasekharan R, Chandrasekharan G, Kalyanaraman AR, Mallikarjunan M, Ayyar RR, Sabesan MN, Srikrishnan T, Srinivasan R, Subramanian E, Rao ST, Venkatesan K (1966) Crystallographic data for some amino acids, dipeptides and related compounds. Curr Sci 35(21):5229–5533

    Google Scholar 

  • Chandra NR, Prabu MM, Venkatraman J, Suresh CG, Vijayan M (1998) X-ray studies of crystalline complexes involving amino acids. XXXIII. Crystal structures of L- and DL-arginine complexed with oxalic acid and a comparative study of amino acid-oxalic acid complexes. Acta Crystallogr B54(3):257–263

    CAS  Google Scholar 

  • Chandrasekaran J, Ilayabarathi P, Maadeswaran P, Mohamedkutty P (2011a) Spectroscopic, thermal and optical properties of glycine oxalate (GOA) – an organic optical crystal. Rasāyan J Chem 4(2):387–392

    CAS  Google Scholar 

  • Chandrasekaran J, Ilayabarathi P, Maaadeswaran P (2011b) Crystal growth, structure and characterizations of an organic optical material-L-alanine oxalate (LAO). Rasāyan J Chem 4(2):425–430

    CAS  Google Scholar 

  • Chaney MO, Seely O, Steinrauf LK (1971) The crystal structure of L-leucine hydriodide. Acta Crystallogr B27:544–548

    Google Scholar 

  • Chapman RP, Bryce DL (2007) A high-field solid-state 35/37Cl NMR and quantum chemical investigation of the chlorine quadrupolar and chemical shift tensors in amino acids hydrochlorides. Phys Chem Chem Phys 9:6219–6230

    CAS  PubMed  Google Scholar 

  • Charoen-In U, Ramasamy P, Manyum P (2010) Comparative study on L-alaninium maleate single crystal grown by Sankaranarayanan-Ramasamy (SR) method and conventional slow evaporation solution technique. J. Crystal Growth 312:2369–2375

    CAS  Google Scholar 

  • Charoen-In U, Ramasamy P, Manyum P (2011) Unidirectional growth of organic nonlinear optical L-arginine maleate dihydrate single crystal by Sankaranarayanan-Ramasamy (SR) method and its characterization. J Cryst Growth 318:745–750

    CAS  Google Scholar 

  • Chemla DS, Zyss J (eds) (1987) Nonlinear optical properties of organic molecules and crystals, vol 1. Academic Press, Orlando

    Google Scholar 

  • Chen XM, Mak TCW (1990) Crystal structure of bis(betaine) hydrochloride monohydrate. J Mol Struct 240:69–75

    CAS  Google Scholar 

  • Chen T, Zheng L, Xu D (1988) Vibrational spectra of single crystal LAP and DLAP. Acta Opt Sin 8:884–891 (In Chinese)

    CAS  Google Scholar 

  • Chen H, Xue L, Che YX, Zheng JM (2006) Synthesis and crystal structure of glycine·3,5-dihydroxybenzoic acid. Jiegou Huaxue (Chin J Struct Chem) 25(2):229–231

    CAS  Google Scholar 

  • Chen T, Sun Z, Song C, Ge Y, Luo J, Lin W, Hong M (2012) Bulk crystal growth and optical and thermal properties of the nonlinear optical crystal L-histidinium-4-nitriphenolate 4-nitrophenol (LHPP). Cryst Growth Des 12:2673–2678

    CAS  Google Scholar 

  • Cheng Z, Cheng YF, Guo LP (1995) A neutron diffraction study for the crystal structure of the deuterium (hydrogen) L-arginine phosphate monohydrate. Jiegou Huaxue (Chin J Struct Chem) 14:29–32

    CAS  Google Scholar 

  • Cheng Z, Cheng YF, Guo LP, Xu D (1997) A neutron diffraction study of hydrogen bonding in the deuterium (hydrogen) L-arginine phosphate monohydrate. Z Kristallogr 212:221–225

    CAS  Google Scholar 

  • Cherouana A, Benali-Cherif N, Bendjeddou L, Merazig H (2002) Diglycinium sulfate. Acta Crystallogr E58:o1351–o1353

    Google Scholar 

  • Chiba A, Ueki T, Ashida T, Sasada Y, Kakudo M (1967) The crystal structure of L-ornithine hydrochloride. Acta Crystallogr 22:863–870

    CAS  Google Scholar 

  • Chibata I, Sumi A, Ito H, Ohtsuki O, Izutsu N (1983) Crystalline salt of basic L-amino acid with L-malic acid and process for the preparation thereof. US Patent #4420432

    Google Scholar 

  • Chimpri AS, Gryl M, DosSantos LHR, Krawczuk A, Macchi P (2013) Correlation between accurate electron density and linear optical properties in amino acid derivatives: L-histidinium hydrogen oxalate. Cryst Growth Des 13:2995–3010

    CAS  Google Scholar 

  • Chitra R, Choudhury RR (2007) Investigation of hydrogen-bond network in bis(glycinium) oxalate using single-crystal neutron diffraction and spectroscopic studies. Acta Crystallogr B63:497–504

    Google Scholar 

  • Chitra R, Thiruvenkatam V, Choudhury RR, Hosur MV, Guru Row TN (2006) Bis(glycinium) oxalate: evidence of strong hydrogen bonding. Acta Crystallogr C62:o274–o277

    CAS  Google Scholar 

  • Choudhury RR, Chitra R (2008) Single crystal diffraction study of triglycine sulphate revisited. Pramana-J Phys 71(5):911–915

    CAS  Google Scholar 

  • Choudhury RR, Roussel P, Capet F, Chitra R (2009) Charge-density analysis of hydrogen-bonded complexes of glycine by the maximum entropy method. J Mol Struct 938:229–237

    CAS  Google Scholar 

  • Chruszcz M, Yasukawa SH, Ferrara JD, Minor W (2004) L-methioninium chloride and L-selenomethioninium chloride at 103K. Acta Crystallogr C60:o868–o871

    CAS  Google Scholar 

  • Chwaleba D, Ciunik Z, Ilczyszyn MM, Ilczyszyn M (2006) Sarcosine-methanesulfonic acid(2:1) crystal: x-ray structure, vibrational properties and nature of hydrogen bonds. J Mol Struct 791(1–3):61–69

    CAS  Google Scholar 

  • Chwaleba D, Ilczyszyn MM, Ilczyszyn M, Ciunik Z (2007) Glycine-methanesulfonic acid (1:1) and glycine-p-toluenesulfonic acid (1:1) crystals: comparison of structures, hydrogen bonds, and vibrations. J Mol Struct 831:119–134

    CAS  Google Scholar 

  • Clastre J (1964) Structures cristallines du bromhydrate de bétaïne et du chrorhydrate de bétaïne. C R Acad Sci Paris 259:3267–3269

    CAS  Google Scholar 

  • Colaneri MJ, Peisach J (1992) An electron spin-echo envelope modulation study of Cu(II)-doped single crystals of L-histidine hydrochloride monohydrate. J Am Chem Soc 114:5335–5341

    CAS  Google Scholar 

  • Cyrac Peter A, Vimalan M, Sagayaraj P, Rajesh Kumar T, Madhavan J (2010a) Linear and nonlinear optical properties of NLO active L-Phenylalanine L-Phenylalaninium nitrate single crystals. Int J Chem Tech Res 2(3):1445–1453

    CAS  Google Scholar 

  • Cyrac Peter A, Vimalan M, Sagayaraj P, Madhavan J (2010b) Thermal, optical, mechanical and electrical properties of a novel NLO active L-phenylalanine L-phenylalaninium perchlorate single crystals. Phys B Condens Matter 405(1):65–71

    CAS  Google Scholar 

  • Dacko S, Czapla Z, Baran J, Drozd M (1996) Ferroelectricity in Gly.H3PO3. Phys Lett A 223:217–220

    CAS  Google Scholar 

  • Dammak T, Fourati N, Abid Y, Boughzala H, Mlayah A, Minot C (2007) Structural, vibrational and ab initio studies of L-histidine oxalate. Spectrochim Acta A 66:1097–1101

    CAS  Google Scholar 

  • Dauter Z, Hempel A, Jedrzejczak H (1977) Crystallographic data of hexaiodotellurates (IV) of some amino acids. Z Kristallogr 146:320–321

    Google Scholar 

  • Davidovich RL, Logvinova VB, Zemnukhova LA, Udovenko AA, Kondratyuk IP (1991) Complex compounds of antimonium (III) fluoride and oxofluoride with glycine. Koord Khim (Russ) (Coord Chem) 17:1342–1348

    CAS  Google Scholar 

  • Davidovich RL, Logvinova VB, Kaidalova TA, Gerasimenko AV (2007) Synthesis, and study of hybrid organic-inorganic glycinium fluorozirconates. Russ J Inorg Chem 52:742–748

    Google Scholar 

  • Davydov BL, Derkacheva LD, Dunina VV, Zhabotinskii ME, Zolin BF, Koreneva LG, Samokhina MA (1970) Connection of charge transfer with second harmonic generation of OCG. JETP Lett 12:24–26 (In Russian)

    CAS  Google Scholar 

  • Davydov BL, Derkacheva LD, Dunina VV, Zhabotinskii ME, Zolin BF, Koreneva LG, Samokhina MA (1971) Charge transfer and second harmonic generation of laser radiation in molecular crystals. Opt Spectrosc 30(3):503–507 (In Russian)

    CAS  Google Scholar 

  • Davydov BL, Katovshchikov SG, Nefedov VA (1977) New nonlinear organic materials for second harmonic generation of neodymium laser radiation. Kvantovaya Elektron 4(1):214–219 (In Russian)

    CAS  Google Scholar 

  • Dawson B (1977) DL-1-Amino-1,2-dicarboxyethane (aspartic acid) hydrochloride. Acta Crystallogr B33:882–884

    CAS  Google Scholar 

  • Dawson B, Mathieson AML (1951) The crystal structures of some α-amino acids. A preliminary X-ray examination. Acta Crystallogr 4:475–477

    CAS  Google Scholar 

  • de Matos Gomes E, Nogueira E, Fernandes I, Belsley M, Paixão JA, Matos Beja A, Ramos Silva M, Martín-Gil J, Martín-Gil F, Mano JF (2001) Synthesis, structure, thermal and non-linear optical properties of L-argininium hydrogen selenite. Acta Crystallogr B57:828–832

    Google Scholar 

  • de Matos Gomes E, Rodrigues VH, Costa MMR, Belsley MS, Cardoso PJM, Gonçalves CF, Proença F (2006) Unusual supramolecular assembly and nonlinear optical properties of L-histidinium hydrogen malate. J Solid State Chem 179:2521–2528

    Google Scholar 

  • de Menezes AS, dos Santos AO, Almeida JMA, Sasaki JM, Cardoso LP (2007) Piezoelectric coefficients of L-histidine hydrochloride monohydrate obtained by synchrotron x-ray Renninger scanning. J Phys Condens Matter 19:106218 (9 p)

    Google Scholar 

  • De Sousa GP, Freire PTC, Lima JA Jr, Mendes Filho J, Melo FEA (2011) High-pressure Raman spectra of L-histidine hydrochloride monohydrate crystal. Vib Spectrosc 57:102–107

    Google Scholar 

  • Debrus S, Marchewka MK, Baran J, Drozd M, Czopnik R, Pietraszko A, Ratajczak H (2005) L-lysine-L-tartaric acid: new molecular complex with nonlinear optical properties. Structure, vibrational spectra and phase transitions. J Solid State Chem 178:2880–2896

    CAS  Google Scholar 

  • Deepthy A, Bhat HL (2000) Ultrasonic investigation of elastic properties and phase transition in ferroelectric glycine phosphate NH3CH2COOH3PO3 single crystals. Phys Rev B 62:8752–8758

    CAS  Google Scholar 

  • Deepthy A, Bhat HL (2001) Growth and characterization of ferroelectric glycine phosphate single crystals. J Cryst Growth 226:287–293

    CAS  Google Scholar 

  • Dega-Szafran Z, Komasa A, Grundwald-Wyspiańska M, Szafran M, Buczak G, Katrusiak A (1997) Hydrogen bonding and proton localization in complexes of carboxybetaines with phenols and carboxylic acids. J Mol Struct 404:13–23

    CAS  Google Scholar 

  • Dekola T, Isakov D, De Matos Gomes E, Nunes Rodrigues VH, Costa MMR (2009) Polarized hydrogen bonds and dielectric properties of glycine glycinium perrhenate. Eur Phys J B68:519–522

    Google Scholar 

  • Delfino M, Dougherty JP, Zwicker WK, Choy MM (1976) Solution growth and characterization of L(+) glutamic acid hydrochloride single crystals. J Cryst Growth 36:267–272

    CAS  Google Scholar 

  • Delfino M, Loiacono GM, Fitzpatrick BJ, Smith WA (1977) Deuterium isotope effect in l(+)-glutamic acid hydrochloride. J Solid State Chem 20:391–395

    CAS  Google Scholar 

  • Delfino M, Loiacono GM, Nicolosi JA (1978) Halide effect in L(+) glutamic acid halogen acid salts. J Solid State Chem 23:289–296

    CAS  Google Scholar 

  • DeLoach LD (1994) Microscopic single-crystal refractometry as a function of wavelength. J Opt Soc Am B 11:1186–1196

    CAS  Google Scholar 

  • Dhanalakshmi B, Ponnusamy S, Muthamizhchelvan C (2010) Growth and characterization of a solution grown, new organic crystal: L-histidine-4-nitrophenolate 4-nitrophenol (LHPP). J Cryst Growth 313:30–36

    CAS  Google Scholar 

  • Dhanaraj G, Srinivasan MR, Bhat HL (1991a) Vibrational spectroscopic study of L-arginine phosphate monohydrate (LAP), a new organic non-linear crystal. J Raman Spectrosc 22:177–181

    CAS  Google Scholar 

  • Dhanaraj G, Shripathi T, Bhat HL (1991b) Growth and defect characterization of L-arginine phosphate monohydrate. J Cryst Growth 113:456–464

    CAS  Google Scholar 

  • Dhanaraj G, Srinivasan MR, Bhat HL, Jayanna HS, Subramanyam SV (1992) Thermal and electrical properties of the novel organic nonlinear crystal L-arginine phosphate monohydrate. J Appl Phys 72:3464–3467

    CAS  Google Scholar 

  • Dhanuskodi S, Angeli Mary PA (2002) EPR and optical absorption studies of Cu2+ doped L-arginine phosphate monohydrate single crystals-part II. Spectrochim Acta A 58:1473–1481

    Google Scholar 

  • Dhanuskodi S, Ramajothi J (2004) Crystal growth, thermal and optical studies of L-histidine tetrafluoroborate: a semiorganic NLO material. Cryst Res Technol 39(7):592–597

    CAS  Google Scholar 

  • Dhanuskodi S, Vasantha K (2004) Structural, thermal and optical characterizations of a NLO material: L-alaninium oxalate. Cryst Res Technol 39(3):259–265

    CAS  Google Scholar 

  • Dhanuskodi S, Angeli Mary PA, Vasantha K (2003) Spectroscopic and optical studies on pure and doped single crystals of sulphate-mixed L-arginine phosphate monohydrate-a nonlinear optical crystal. Spectrochim Acta A 59:927–935

    CAS  Google Scholar 

  • Dhanuskodi S, Angeli Mary PA, Sambasiva Rao P (2005) Single crystal ESR and optical absorption studies of Cu2+ ion in L-arginine sulphophosphate monohydrate-a nonlinear optical crystal. Spectrochim Acta A 61:721–725

    CAS  Google Scholar 

  • Di K (2010) (2S*)-2-Ammonio-3-(1H-indole-3-yl)-propionate pyridine-2,4-dicarboxylic acid ethanol solvate. Acta Crystallogr E66:o1125–o1126

    Google Scholar 

  • Di Blasio B, Pavone V, Pedone C (1977a) Glycine hydrochloride C2H5NO2.HCl, L-alanine hydrochloride C3H7NO2.HCl. Cryst Struct Commun 6:745–748

    Google Scholar 

  • Di Blasio B, Pavone V, Pedone C (1977b) L-methionine hydrochloride, C5H10NO2S.HCl. Cryst Struct Commun 6:845–848

    Google Scholar 

  • Di Blasio B, Napolitano G, Pedone C (1977c) DL-Valine hydrochloride. Acta Crystallogr B33:542–545

    Google Scholar 

  • Dittrich B, Munshi P, Spackman MA (2007) Redetermination, invariom-model and multipole refinement of L-ornithine hydrochloride. Acta Crystallogr B63:505–509

    Google Scholar 

  • Dmitriev VG, Gurzadyan GG, Nikogosyan DN (1999) Handbook of nonlinear optical crystals. Springer, New York

    Google Scholar 

  • Domingos SR, Silva MR, Martins ND, Beja AM, Paixão JA (2008) Pyromellitic acid-sarcosine (1/2). Acta Crystallogr E64:o826

    Google Scholar 

  • Domingos SR, Silva PSP, Buma WJ, Garcia MH, Lopes NC, Paixão JA, Silva MR, Woutersen S (2012) Amplification of the linear and nonlinear optical response of a chiral molecular crystal. J Chem Phys 136:134501

    PubMed  Google Scholar 

  • Donohue J, Caron A (1964) Refinement of the crystal structure of histidine hydrochloride monohydrate. Acta Crystallogr 17:1178–1180

    CAS  Google Scholar 

  • Donohue J, Lavine LR, Rollett JS (1956) The crystal structure of histidine hydrochloride monohydrate. Acta Crystallogr 9:655–662

    CAS  Google Scholar 

  • Dörffel M, Narz T, Haussühl S (1989) Struktur und Phasenübergänge des monoklinen Betainphosphits, (CH3)3NCH2COO.H3PO3. Z Kristallogr 186:71–73

    Google Scholar 

  • Dow J, Jensen LH, Mazumdar SK, Srinivasan R, Ramachandran GN (1970) Refinement of the structure of arginine hydrochloride monohydrate. Acta Crystallogr B26(11):1662–1671

    Google Scholar 

  • Drebushchak TN, Bizyaev SV, Boldyreva EV (2008) Bis(DL-cysteinium) oxalate. Acta Crystallogr C64:o313–o315

    Google Scholar 

  • Drozd M, Marchewka MK (2006) The structure, vibrational spectra and nonlinear optical properties of the L-lysine x tartaric acid complex-theoretical studies. Spectrochim Acta A 64:6–23

    CAS  Google Scholar 

  • Dubský JV, Maitner J (1936) Addition compounds of neutral salts with glycine. Práace Mor Přirodověd Spol V Brnè 6(3); Chem Obzor 10, Abstract Sect 45 (1935). Quoted from: Chemical Abstracts 30, 7478

    Google Scholar 

  • Easwaran KRK (1966) NMR study of ferroelectric diglycine nitrate. J Phys Soc Jpn 21(1):61–64

    CAS  Google Scholar 

  • Ebdrup S, Pettersson I, Rasmussen BH, Deussen HJ, Jensen AF, Mortensen SB, Fleckner J, Pridal L, Nygaard L, Sauerberg P (2003) Synthesis and biological and structural characterization of the dual-acting peroxisome proliferator-activated receptor α/γ agonist ragaglitazar. J Med Chem 46:1306–1317

    CAS  PubMed  Google Scholar 

  • Edwin B, Rastogi VK, Hubert Joe I (2010) Structural conformation and vibrational studies of nonlinear optical material L-prolinium picrate. AIP Conf Proc 1267:1196–1197

    Google Scholar 

  • Edwin B, Amalanathan M, Hubert Joe I (2012) Vibrational spectra and natural bond orbital analysis of organic crystal L-prolinium picrate. Spectrochim Acta A 96:10–17

    CAS  Google Scholar 

  • Egorov VM, Lemanov VV (2006) Differential scanning calorimetry study of the phase transition in diserine sulfate monohydrate crystals. Phys Solid State 48(10):1954–1958

    CAS  Google Scholar 

  • Eimerl D, Velsko S, Davis L, Wang F, Loiacono G, Kennedy G (1989a) Deuterated L-arginine phosphate a new efficient nonlinear crystal. IEEE J Quantum Electron 25:179–193

    CAS  Google Scholar 

  • Eimerl D, Marion J, Graham EK, McKinstry HA, Haussühl S (1989b) Elastic constants and thermal fracture of ArGaSe2 and d-LAP. IEEE J Quantum Electron 27:142–145

    Google Scholar 

  • Eimerl D, Velsko S, Davis L, Wang F (1990) Progress in nonlinear optical materials for high power lasers. Prog Cryst Growth Ch 20:59–113

    CAS  Google Scholar 

  • Elleuch N, Ahmed AB, Feki H, Abid Y, Minot C (2014) Vibrational spectra, optical properties. NBO and HOMO-LUMO analysis of L-Phenylalanine L-Phenylalalinium Perchlorate: DFT calculations. Spectrochim Acta A 121:129–138

    CAS  Google Scholar 

  • Ennan AA, Gavrilova LA, Chebotarev AN, Andreeva NV (1981) Glycine complexes of fluoro-containing acids. Zhurn Neorg Khimii 26(2):374–378 (In Russian)

    CAS  Google Scholar 

  • Ennan AA, Chebotarev AN, Gavrilova LA, Andreeva NV (1983) Hydrofluorides and hexafluorosilicates of monoaminocarboxylic acids. Zhurn Neorg Khimii 28(5):1117–1124 (In Russian)

    CAS  Google Scholar 

  • Espinosa E, Wyncke B, Brehat F, Veintemillas S, Molins E, Lecomte C (1994) Far-infrared reflectivity spectra of L-arginine phosphate monohydrate (LAP). Infrared Phys Technol 35:625–632

    CAS  Google Scholar 

  • Espinosa E, Veintemillas S, Miravitlles C, Molins E (1995) Hydrogen bonding in crystalline L-HisH + ∙H2PO4-∙H2O. Z Kristallogr 210:195–198

    CAS  Google Scholar 

  • Espinosa E, Lecomte C, Molins E, Veintemillas S, Molins E, Cousson A, Paulus W (1996) Electron density study of a new non-linear optical material: L-arginine phosphate monohydrate (LAP). Comparison between X-X and X-(X + N) refinements. Acta Crystallogr B52:519–534

    CAS  Google Scholar 

  • Espinosa E, Wyncke B, Bréhat F, Gerbaux X, Veintemillas S, Molins E (1997) Infrared vibrational spectra of L-histidinium dihydrogen orthophosphate orthophosphoric acid (LHP). Infrared Phys Technol 38:449–458

    CAS  Google Scholar 

  • Esthaku Peter M, Ramasamy P (2012) Growth and characterization of an organic nonlinear optical crystal: glycinium trichloroacetate. Mater Chem Phys 137:258–263

    Google Scholar 

  • Evlanova NF, Moldozhanova GT, Pashina ZS, Rashkovich LN, Shekunov BY (1990) Study of crystallization of L-arginine chloride monohydrate. Kristallografiya 35:1527–1533

    CAS  Google Scholar 

  • Faamau JW, Tiekink ERT (1993) New data for diglycine hydrochloride. Z Kristallogr 2004(2):277–282

    Google Scholar 

  • Faria JLB, Almeida FM, Pilla O, Rossi F, Sasaki JM, Melo FEA, Mendes Filho J, Freire PTC (2004) Raman spectra of L-histidine hydrochloride monohydrate crystal. J Raman Spectrosc 35:242–248

    CAS  Google Scholar 

  • Fehst I, Paasch M, Hutton SL, Braune M, Böhmer R, Loidl A, Dörffel R, Narz T, Haussühl S, McIntyre GJ (1993) Paraelectric and ferroelectric phases of betaine phosphite: structural, thermodynamic, and dielectric properties. Ferroelectrics 138:1–10

    CAS  Google Scholar 

  • Fischer A (2006) D-Alanine alaninium bromide. Acta Crystallogr E62(12):o5786–o5788

    Google Scholar 

  • Fischer MS, Templeton DH, Zalkin A (1970) Solid state structure and chemistry of the choline halides and their analogues. Redetermination of the betaine hydrochloride structure, [(CH3)3NCH2COOH]+Cl. Acta Crystallogr B26:1392–1397

    Google Scholar 

  • Flaig R, Koritsanszky T, Dittrich B, Wagner A, Luger P (2002) Intra- and intermolecular topological properties of amino acids: a comparative study of experimental and theoretical results. J Am Chem Soc 124:3407–3417

    CAS  PubMed  Google Scholar 

  • Fleck M (n.d.) (GlyH)NO3. CCDC #928883

    Google Scholar 

  • Fleck M, Petrosyan AM (2009) Comments on papers reporting IR-spectra and other data of alleged L-Alanine Alaninium Nitrate and L-Alanine Sodium Nitrate crystals. Cryst Res Technol 44(7):769–772

    CAS  Google Scholar 

  • Fleck M, Petrosyan AM (2010) Difficulties in the growth and characterization of non-linear optical materials: a case study of salts of amino acids. J Cryst Growth 312(15):2284–2290

    CAS  Google Scholar 

  • Fleck S, Weiss A (1984) Hydrogen bonds in hydrohalides of amino acids. A 79,81Br and 127I NQR study. Ber Bunsenges Phys Chem 88:956–963

    CAS  Google Scholar 

  • Fleck M, Lengauer C, Bohatý L, Tillmanns E (2008) Synthesis, crystal structures and thermal behaviour of novel L-alanine halogenide compounds. Acta Chim Slov 55:880–888

    CAS  Google Scholar 

  • Fleck M, Ghazaryan VV, Petrosyan AM (2010) Glycine hydrogen fluoride: remarkable hydrogen bonding in the dimeric glycine glycinium cation. J Mol Struct 984:83–88

    CAS  Google Scholar 

  • Fleck M, Ghazaryan VV, Petrosyan AM (2012a) Crystal structure at 296 and 150K, vibrational spectra and thermal behaviour of sarcosine sarcosinium nitrate. Z Kristallogr 227(12):819–824

    CAS  Google Scholar 

  • Fleck M, Ghazaryan VV, Petrosyan AM (2012b) Hexafluorosilicates of sarcosine. Solid State Sci 14:952–963

    CAS  Google Scholar 

  • Fleck M, Ghazaryan VV, Petrosyan AM (2012c) β-Alaninium picrate: a new salt with di-β-alaninium dimeric cation. J Mol Struct 1019:91–96

    CAS  Google Scholar 

  • Fleck M, Ghazaryan VV, Petrosyan AM (2013a) Two forms of sarcosine sarcosinium hydrogen L-tartrate. J Mol Struct 1045:95–103

    CAS  Google Scholar 

  • Fleck M, Ghazaryan VV, Petrosyan AM (2013b) Amino acid hexafluorosilicates – an overview. Z Kristallogr 228(5):240–249

    CAS  Google Scholar 

  • Fleck M, Ghazaryan VV, Bezhanova LS, Atanesyan AK, Petrosyan AM (2013c) New crystals of L-histidine maleates. J Mol Struct 1035:407–415

    CAS  Google Scholar 

  • Fleck M, Ghazaryan VV, Petrosyan AM (2014) Mixed salts of amino acids: L-ornithinium(2+) sulfate hydrogen fluoride and tri-L-ornithinium(2+) dinitrate disulfate. JUET Res J Sci Tech 1:11–25

    Google Scholar 

  • Fonseca TL, Sabino JR, Castro MA, Georg HC (2010) A theoretical investigation of electric properties of L-arginine phosphate monohydrate including environment polarization effects. J Chem Phys 133:144103

    CAS  PubMed  Google Scholar 

  • Franken PA, Hill AE, Peters CW, Weinreich G (1961) Generation of optical harmonics. Phys Rev Lett 7(4):118–119

    Google Scholar 

  • Frey MN, Koetzle TF, Lehmann MS, Hamilton WC (1973) Precision neutron diffraction structure determination of protein and nucleic acid components. X. A comparison between the crystal and molecular structures of L-tyrosine and L-tyrosine hydrochloride. J Chem Phys 58(6):2547–2556

    CAS  Google Scholar 

  • Frost WS (1942) Bis(amino acid) derivatives. I. Diglycine halogen acid addition products. J Am Chem Soc 64(1942):1286–1287

    CAS  Google Scholar 

  • Fu TY, Scheffer JR, Trotter J (1997) 4-[2,4,6,-tris(1-methylethyl)benzoyl]benzoic acid (S)-(-)-Proline. Acta Crystallogr C53:1259–1263

    CAS  Google Scholar 

  • Fuchs BA, Syn CK, Velsko SP (1989) Diamond turning of L-arginine phosphate, a new organic nonlinear crystal. Appl Optics 28:4465–4472

    CAS  Google Scholar 

  • Fuess H, Hohlwein D, Mason SA (1977) Neutron diffraction study of L-histidine hydrochloride monohydrate. Acta Crystallogr B33:654–659

    CAS  Google Scholar 

  • Fujii I (2009) Crystal structure of L-(S)-tryptophan D-(R)-mandelate 1.5H2O. X-Ray Struct Anal Online 25:35–36

    CAS  Google Scholar 

  • Fujii I, Hirayama N (2002) Chiral space formed by (+)-(1S)-1,1´-binaphthalene-2,2´-diyl phosphate: recognition of aliphatic L-α-amino acids. Helv Chim Acta 85:2946–2960

    CAS  Google Scholar 

  • Fujii I, Baba H, Takahashi Y (2005a) Crystal structures of L-(R)-cysteine-mandelic acid diastereomers. Anal Sci 21:x175–x176

    CAS  Google Scholar 

  • Fujii I, Watadani T, Nunomura S, Takahashi Y (2005b) Crystal structure of (R)-2-Phenoxypropionic acid-(S)-valine. Anal Sci 21:x41–x42

    CAS  Google Scholar 

  • Furberg S, Solbakk J (1973) Crystal structure of arginine diethyl phosphate. Acta Chem Scand 27(4):1226–1232

    CAS  Google Scholar 

  • Ganesh RB, Kannan V, Sathyalakshmi R, Ramasamy P (2007) The growth of L-glutamic acid hydrochloride crystals by Sankaranarayanan-Ramasamy (SR) method. Mater Lett 61:706–708

    CAS  Google Scholar 

  • Garfinkel D, Edsall JT (1958) Raman spectra of amino acids and related compounds. VIII. Raman and infrared spectra of imidazole, 4-methylimidazole and histidine. J Am Chem Soc 80:3807–3812

    CAS  Google Scholar 

  • Garret CGB, Robinson FNH (1966) Miller’s phenomenological rule for computing nonlinear susceptibilities. IEEE J Quantum Electron 2:328–329

    Google Scholar 

  • Gartland GL, Freeman GR, Bugg CE (1974) Crystal structures of tryptamine picrate and D, L-tryptophan picrate-methanol, two indole donor-acceptor complexes. Acta Crystallogr B30:1841–1849

    Google Scholar 

  • Geng YL, Xu D, Sun DL, Zhang GH, Du W, Liu HY, Wang XQ (2004a) Growth morphology of {100} faces of L-Arginine phosphate monohydrate single crystals investigated by atomic force microscopy. Cryst Res Technol 39:712–717

    CAS  Google Scholar 

  • Geng YL, Xu D, Sun DL, Wang XQ, Du W, Liu HY, Zhang GH (2004b) AFM study of the surface morphology of the {100} cleavage planes of L-arginine phosphate monohydrate single crystals. Cryst Res Technol 39:759–762

    CAS  Google Scholar 

  • Geng YL, Xu D, Wang YL, Du W, Liu HY, Zhang GH, Wang XQ, Sun DL (2005a) Atomic force microscopy study on crystal growth of Cu2+-doped L-arginine phosphate monohydrate crystals. J Cryst Growth 273:624–628

    CAS  Google Scholar 

  • Geng YL, Xu D, Sun DL, Du W, Liu HY, Zhang GH, Wang XQ (2005b) Atomic force microscopy studies on growth mechanisms of LAP crystals grown in solution containing excessive amount of L-arginine. Mater Chem Phys 90:53–56

    CAS  Google Scholar 

  • Geng YL, Xu D, Wang XQ, Yu GW, Zhang GH, Zhang HB (2005c) AFM study of surface morphology of {100} cleavage planes of L-arginine acetate crystals. J. Crystal Growth 282:208–213

    CAS  Google Scholar 

  • Gerasimenko AV, Pushilin MA, Davidovich RL (2008) Disordering of the [NbOF5]2− complex anions in bis(glycinium) pentafluoridooxidoniobate(V) dihydrate. Acta Crystallogr C64:m358–m361

    Google Scholar 

  • Gerasimenko AV, Davidovich RL, Logvinova VB (2011) Crystal structure of layered zirconium pentafluorides of methylammonium, glycine, and β-alanine. J Struct Chem 52:524–530

    CAS  Google Scholar 

  • Gesi K, Ozawa K (1973) Effect of hydrostatic pressure on the ferroelectric phase transition in diglycine nitrate. Jpn J Appl Phys 12(6):951–952

    CAS  Google Scholar 

  • Ghazaryan VV (2011) Crystal growth and characterization of L-threoninium chloride and L-threoninium bromide, new nonlinear optical crystals. Proc SPIE 7998:79980G

    Google Scholar 

  • Ghazaryan VV (2014) Preparation and investigation of mixed salts of amino acids with different anions. PhD thesis, Yerevan (In Armenian)

    Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2010a) Crystal structures and vibrational spectra of novel compounds with glycine glycinium cations. J Mol Struct 977(1–3):117–129

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2010b) Mixed salts of amino acids: on the vibrational spectra of mixed salts containing a L-lysinium(+)…L-lysinium(2+) dimeric cation. J Mol Struct 982(1–3):145–151

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2010c) Mixed salts of amino acids: L-lysinium(2+) chloride nitrate, L-lysinium(2+) chloride tetrafluoroborate and L-lysinium(2+) chloride perchlorate. J Mol Struct 984(1–3):268–275

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2011a) New salts of amino acids with dimeric cations. Proc SPIE 7998:79980F

    Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2011b) Glycine glycinium picrate – reinvestigation of the structure and vibrational spectra. Spectrochim Acta A 78(1):128–132

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2011c) Mixed salts of amino acids: new analogs of the di-L-ornithinium(2+) chloride nitrate sulfate crystal. J Crystallization Phys Chem 2(1):7–16

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2012a) Sarcosine sarcosinium chloride and sarcosine sarcosinium bromide. J Mol Struct 1020:160–166

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2012b) Sarcosine sarcosinium tetrafluoroborate and sarcosine sarcosinium perchlorate: synthesis, structure and vibrational spectra. J Mol Struct 1021:130–137

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2012c) Hexafluorosilicates of alanine. Z Kristallogr 227(9):646–655

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2012d) Structure and vibrational spectra of L-alanine L-alaninium picrate monohydrate. J Mol Struct 1015:51–55

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2012e) Mixed salts of amino acids: L-histidinium(+)…L-histidinium(2+) nitrate-hexafluorosilicate. J Mol Struct 1026:140–144

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2013a) Salts of amino acids with hexafluorosilicate anion, J. Crystal Growth 362:162–166

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2013b) Iodides of sarcosine. J Mol Struct 1032:35–40

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2013c) Mixed salts of amino acids with different anions. J. Crystal Growth 362:182–188

    CAS  Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2014a) Glycine glycinium bromide. CCDC #929566

    Google Scholar 

  • Ghazaryan VV, Fleck M, Petrosyan AM (2014b) New chemical analogs of triglycine sulfate. J Cryst Growth. http://dx.doi.org/10.1016/j.jcrysgro.2013.11.054

  • Ghazaryan VV, Suponitsky KY, Lyssenko KA, Atanesyan AK, Petrosyan AM (in prep)

    Google Scholar 

  • Giordmaine JA (1962) Mixing of light beams in crystals. Phys Rev Lett 8(1):19–20

    Google Scholar 

  • Giordmaine JA, Miller RC (1965) Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys Rev Lett 14(24):973–976

    CAS  Google Scholar 

  • Globelny P, Mukherjee A, Dessiraju GR (2011) Drug-drug co-crystals: temperature-dependent proton mobility in the molecular complex of isoniazid with 4-aminosalicylic acid. CrystEngComm 13:4358–4364

    Google Scholar 

  • Głowiak T, Szemik AW (1986) Crystal structure and spectroscopic properties of glycinium monophenylphosphate. J Cryst Spectrosc Res 16(1):79–89

    Google Scholar 

  • Głowiak T, Wnęk I (1985) Crystal and molecular structure of glycinium diphenylphosphate. J Cryst Spectrosc Res 15(2):157–171

    Google Scholar 

  • Gnanasekaran P, Madhavan J (2010) Synthesis, structural, FT-IR and non-linear optical studies of pure and lanthanum doped L-arginine acetate crystals. Asian J Chem 22:109–144

    CAS  Google Scholar 

  • Godzisz D, Ilczyszyn MM, Ilczyszyn M (2002) Classification and nature of hydrogen bonds to betaine. X-ray, 13C CP MAS and IR description of low barrier hydrogen bonds. J Mol Struct 606(1–3):123–137

    CAS  Google Scholar 

  • Godzisz D, Ilczyszyn M, Ciunik Z (2003a) β-Alanine-hydrochloride (2:1) crystal: structure, 13C NMR and vibrational properties, protonation character. Spectrochim Acta A 59(2):235–244

    CAS  Google Scholar 

  • Godzisz D, Ilczyszyn M, Ilczyszyn MM (2003b) β-Alanine-oxalic acid (1:1) hemihydrates crystal: structure, 13C NMR and vibrational properties, protonation character. Spectrochim Acta A 59:681–693

    CAS  Google Scholar 

  • Gokul Raj S, Ramesh Kumar G, Mohan R, Pandi S, Jayavel R (2005) Structural, optical and dielectric studies on solution-grown semi-organic L-histidine tetrafluoroborate single crystal. Mater Chem Phys 90(1):144–147

    Google Scholar 

  • Gokul Raj S, Ramesh Kumar G, Raghavalu T, Mohan R, Jayavel R (2006a) L-histidinium tetrafluoroborate. Acta Crystallogr E62(3):o1178–o1180

    Google Scholar 

  • Gokul Raj S, Ramesh Kumar G, Mohan R, Jayavel R (2006b) L-histidinium trifluoroacetate. Acta Crystallogr E62:o5–o7

    Google Scholar 

  • Gokul Raj S, Ramesh Kumar G, Mohan R, Jayavel R, Varghese B (2006c) L-histidinium trichloroacetate. Acta Crystallogr E62:o1704–o1706

    Google Scholar 

  • Gokul Raj S, Ramesh Kumar G, Raghavalu T, Kumar P, Mohan R, Jayavel R (2006d) Structural, spectral, linear and nonlinear optical properties of new nonlinear optical L-histidinium trichloroacetate crystals. Spectrochim Acta A 65:1021–1024

    Google Scholar 

  • Gokul Raj S, Ramesh Kumar G, Mohan R, Varghese B, Jayavel R (2006e) Crystal structure of single crystals of nonlinear optical L-histidinium trichloroacetate. J Mol Struct 825:158–164

    Google Scholar 

  • Gokul Raj S, Ramesh Kumar G, Mohan R, Jayavel R, Varghese B (2007) Crystal structure and vibrational analysis of novel nonlinear optical L-histidine tetrafluoroborate (L-HFB) single crystals. Phys Status Solidi B 244(2):558–568

    Google Scholar 

  • Golič L, Hamilton WC (1972) The structure of di-L-Leucine hydrochloride: an X-ray diffraction study. Acta Crystallogr B28(4):1265–1271

    Google Scholar 

  • Gómez E, Claus R, Pierce RM, Ushioda S (1984) The Raman-active long wave phonon modes of betaine sulfate. Z Kristallogr 168:67–74

    Google Scholar 

  • Gonsago CA, Albert HM, Karthikeyan J, Sagayaraj P, Pragasam AJA (2012a) Crystal structure, optical and thermal studies of a new organic nonlinear optical material: L-histidinium maleate 1.5-hydrate. Mater Res Bull 47:1648–1652

    CAS  Google Scholar 

  • Gonsago CA, Pandi S, Albert HM, Pragasam AJA (2012b) L-histidinium maleate crystals for nonlinear frequency conversion. Int J Appl Phys Math 2:54–57

    CAS  Google Scholar 

  • Gopalakrishnan R, Ramasamy P (2009) Reply to “Comments on papers reporting IR-spectra and other data of L-alanine alaninium nitrate and L-alanine sodium nitrate crystals” by M. Fleck and A.M. Petrosyan. Cryst Res Technol 44(7):773–775

    CAS  Google Scholar 

  • Görbitz CH (2001) L-Phenylalanine nitrate (4/1). Acta Crystallogr E57(2):o192–o194

    Google Scholar 

  • Görbitz CH, Etter MC (1992) Structure of L-phenylalanine L-phenylalaninium formate. Acta Crystallogr C48(7):1317–1320

    Google Scholar 

  • Görbitz CH, Husdal J (1998) Cocrystallizing agents for amino acids. II. The crystal structures of L-histidine.4,5-imidazoledicarboxylic acid (1:1) and L-lysine.4,5-imidazoledicarboxylic acid (1:1). Acta Chem Scand 52:218–226

    Google Scholar 

  • Gowri S, Uma Devi T, Sajan D, Bheeter SR, Lawrence N (2011) Spectral, thermal and optical properties of L-tryptophanium picrate: a nonlinear optical single crystal. Spectrochim Acta A 81:257–260

    CAS  Google Scholar 

  • Grandin A, Borel MM, Raveau B (1985) Intercalation of primary diamines and amino acids in the layer structure oxide HTiNbO5. J Solid State Chem 60(3):366–375

    CAS  Google Scholar 

  • Guenifa F, Bendjeddou L, Cherouana A, Dahaoui S, Lecomte C (2009) DL-Asparaginium perchlorate. Acta Crystallogr E65:o2264–o2265

    Google Scholar 

  • Guenifa F, Bendjeddou L, Cherouana A, Dahaoui S, Lecomte C (2012) DL-Tyrosinium chloride dihydrate. Acta Crystallogr E68:o3227–o3228

    Google Scholar 

  • Guha S (1970) A preliminary report on the structure of glycocyamine hemihydrate, diglycine monopicrate and 4-(N-phenylpiperizino)-6-methoxy quinaldine. Indian J Phys 44:267–269

    CAS  Google Scholar 

  • Guha S, Mazumdar SK, Saha NN (1969) The crystal and molecular structure of L-ornithine hydrochloride. Z Kristallogr 129:84–100

    CAS  Google Scholar 

  • Guidara S, Feki H, Abid Y (2013) Vibrational spectral studies and non-linear optical properties of L-leucine L-leucinium picrate: a density functional theory approach. Spectrochim Acta A 115:437–444

    CAS  Google Scholar 

  • Gulam Mohamed M, Vimalan M, Jesudurai JGM, Madhavan J, Sagayaraj P (2007) Growth and characterization of pure and doped nonlinear optical l-arginine acetate single crystals. Cryst Res Technol 42:948–954

    Google Scholar 

  • Günay N, Pir H, Avci D, Atalay Y (2013) NLO and NBO analysis of sarcosine-maleic acid by using HF and B3LYP calculations. J Chem 2013:712130, 16 p

    Google Scholar 

  • Hadži D, Marciszewski H (1967) Hydrogen bonding in dileucine hydrochloride (with reference to triglycine sulphate). Chem Commun (1):2–3

    Google Scholar 

  • Hahn T, Buerger MJ (1957) The crystal structure of diglycine hydrochloride, 2(C2H5O2N).HCl. Z Kristallogr 108:419–453

    CAS  Google Scholar 

  • Haja Hameed AS, Rohani S (2007) Nucleation studies and surface SHG analysis of L-arginine phosphate monohydrate (LAP) family crystals. Mater Lett 61:5142–5144

    Google Scholar 

  • Haja Hameed AS, Ravi G, Hossain MDM, Ramasamy P (1999) Growth and characterization of L-arginine phosphate family crystals. J. Crystal Growth 204:333–340

    Google Scholar 

  • Haja Hameed AS, Ravi G, Ramasamy P (2001) Inhibition of microbial growth, study of solution stability, growth and characterization of potassium fluoride mixed L-arginine phosphate single crystals. J Cryst Growth 229:547–552

    CAS  Google Scholar 

  • Haja Hameed AS, Ravi G, Ilangovan R, Nixon Azariah A, Ramasamy P (2002a) Growth and characterization of deuterated analog of L-arginine phosphate. J Cryst Growth 237–239:890–893

    Google Scholar 

  • Haja Hameed AS, Ravi G, Mahalingam T, Ramasamy P (2002b) Growth of stubbier habit LAP2 single crystals and their characterisation studies. Mater Sci Eng B95:61–66

    Google Scholar 

  • Haja Hameed AS, Anandan P, Jayavel R, Ramasamy P, Ravi G (2003a) Synthesis, growth and characterization of nonlinear optical material: L-arginine fluoride. J Cryst Growth 249:316–320

    CAS  Google Scholar 

  • Haja Hameed AS, Ravi G, Jayavel R, Ramasamy P (2003b) Nucleation kinetics, growth and characterization of dLAP, dLAP:KF and dLAP:NaN3 crystals. J Cryst Growth 250:126–133

    Google Scholar 

  • Haja Hameed AS, Karthikeyan C, Ravi G, Rohani R (2011) Characterization studies on the additives mixed L-arginine phosphate monohydrate (LAP) crystals. Physica B 406:1363–1367

    CAS  Google Scholar 

  • Harbison G, Herzfeld J, Griffin RG (1981) Nitrogen-15 chemical shift tensors in L-histidine hydrochloride monohydrate. J Am Chem Soc 103:4752–4754

    CAS  Google Scholar 

  • Hasebe K, Masuno K, Nanitani S, Asahi T (1998) Structural phase transitions of betaine phosphite studied by X-ray scattering. Ferroelectrics 217(1):75–81

    CAS  Google Scholar 

  • Hasebe K, Tsuchiya S, Kawamura Y, Asahi T (2001) X-ray study of phase transition in betaine phosphite. J Phys Soc Jap 70:3300–3305

    CAS  Google Scholar 

  • Hasegawa K, Ishikawa K, Kawaoka R, Sano C, Iitani K, Komatsu H, Nagashima N (1998) Complexes between L-Leucine and its precipitants. Acta Crystallogr C54:637–641

    CAS  Google Scholar 

  • Haussühl S (1988) Ferroelastic phase transition and elastic properties of orthorhombic betaine hydrogen maleinate, (CH3)3NCH2COO. (CH2)2(COOH)2. Solid State Commun 68:963–966

    Google Scholar 

  • Haussühl S (1989) Elastic and thermoelastic properties of twelve adducts of betaine, (CH3)3NCCOO, with H2O, HCl, HBr, HI, HNO3, H2SO4, H3PO3, H3PO4, 1,4-toluene sulfonic acid, MnCl2 and KBr. Z Kristallogr 188:311–320

    Google Scholar 

  • Haussühl E, Haussühl S (1995) Elastic properties of sulfamic acid and sulfamates of Li, Na, K, Rb, Cs, Tl, NH4, C(NH2)3 and (CH3)3NCH2COOH. Z Kristallogr 210:269–275

    Google Scholar 

  • Haussühl S, Schreuer J (1996a) Crystal structure, thermal expansion and elastic properties of triclinic betaine hydrogen dihydrogen triiodate, ((CH3)3NCH2COO)H2(IO3)3. Z Kristallogr 211:903–907

    Google Scholar 

  • Haussühl S, Schreuer J (1996b) Crystal structure, thermal expansion and elastic properties of triclinic betaine hydrogen ammonium sulfate ((CH3)3NCH2COOH)NH4SO4. Z Kristallogr 211(2):79–83

    Google Scholar 

  • Haussühl E, Schreuer J (2001) Crystal structure and elastic properties of betaine fumarate and of betaine maleate, two isomers of ((CH3)3NCH2COOH.OOC(CH)2COOH. Z Kristallogr 216:616–622

    Google Scholar 

  • Haussühl S, Wang J (1989) Elastic and thermoelastic properties of monoclinic betaine hydrogen oxalate hydrate (CH3)3NCH2COO. (COOH)2.H2O. Z Kristallogr 187:249–251

    Google Scholar 

  • Haussühl S, Chrosch J, Gnanam F, Fiorentini E, Recker K, Wallrafen F (1990) Crystal growth and physical properties of monoclinic L-arginine hydrochloride monohydrate, C6H14O2N4HCl.H2O, and L-arginine hydrobromide monohydrate, C6H14O2N4HBr.H2O. Cryst Res Technol 25:617–623

    Google Scholar 

  • Haussühl S, Karapetyan HA, Petrosyan AM (2003) Crystal structure and properties of L-arginine diphosphate. Z Kristallogr 218:501–506

    Google Scholar 

  • Haussühl S, Karapetyan HA, Sukiasyan RP, Petrosyan AM (2006) Crystal structure and properties of orthorhombic L-arginine formate. Cryst Growth Design 6(9):2041–2046

    Google Scholar 

  • Hempel A, Dauter Z, Szwabski S (1977a) Preliminary crystal data on hexabromoselenates(IV) of some amino acids. Z Kristallogr 146:318–319

    Google Scholar 

  • Hempel A, Dauter Z, Pastuszak R (1977b) Crystal data on amino acids salts containing anions of the type MeX6 2−. Z Kristallogr 146(4–6):317

    Google Scholar 

  • Henschel D, Moers O, Wijaya K, Wirth A, Blaschette A, Jones PG (2002) Polysulfonylamines, CLIII [1]. Weak hydrogen bonding with activated methyl donors: crystal structures of cholinium, betainium and dimethyl[2-(dimethylamino)ethyl]ammonium-dimesylamide. Z Naturforsch B: Chem Sci 57:534–546

    CAS  Google Scholar 

  • Herbstein FH, Kapon M (1979) The crystal structure of trimesic acid, its hydrates and complexes. V. L- (or DL-) histidinium trimesate-1/3 acetone. Acta Crystallogr B35:1614–1619

    CAS  Google Scholar 

  • Herbstein FH, Kapon M, Maor I, Reisner GM (1981) The structure of trimesic acid, its hydrates and complexes. VI. Glycine-trimesic acid monohydrate, H3N+CH2COO.C9H6O6.H2O. Acta Crystallogr B37:136–140

    CAS  Google Scholar 

  • Herreros-Cedrés J, Hernández-Rodríguez C, González-Díaz B, Guerrero-Lemus R (2003) Temperature-dependent optical anisotropy of L-arginine phosphate single crystal. Appl Phys B 77:607–612

    Google Scholar 

  • Hiramatsu H, Miki N, Takeuchi H (2010) Effect of conformation and hydrogen bonding on the C=C and NCN stretching Raman bands of N-deuterated histidinium. J Raman Spectrosc 41:1708–1713

    Google Scholar 

  • Hoshino S, Okaya Y, Pepinsky R (1959) Crystal structure of the ferroelectric phase of (glycine)3.H2SO4. Phys Rev 115(2):323–330

    CAS  Google Scholar 

  • Hoshino S, Sato S, Toyoda K (1963) Crystal structure and phase transition of di-glycine nitrate. Jap J Appl Phys 2(8):519–520

    CAS  Google Scholar 

  • Hu ZQ, Xu DJ, Xu YZ, Wu JY, Chiang MY (2002) (R)-Mandelic acid (S)-alanine hemihydrate. Acta Crystallogr C58:o612–o614

    CAS  Google Scholar 

  • Hu ZQ, Xu DJ, Xu YZ (2004a) (S)-Alanine-(S)-mandelic acid (1/1). Acta Crystallogr E60:o269–o271

    Google Scholar 

  • Hu ZQ, Xu DJ, Xu YZ, Wu JY, Chiang MY (2004b) Optical separation of racemic phenylalanine, and structure of complex consisting of R-phenylalanine and R-mandelic acid. Chin J Struc Chem 23(1):38–40

    Google Scholar 

  • Hubert Joe I (2010) FT-Raman and IR spectral analysis and DFT computations of NLO crystal L-valine hydrobromide. AIP Conf Proc 1267(1):1194–1195

    Google Scholar 

  • Hubert Joe I, Philip D, Aruldhas G, Botto IL (1991) Raman and IR spectra of β-alanine and sarcosine monophosphates. J Raman Spectrosc 22:423–425

    Google Scholar 

  • Hübschle CB, Dittrich B, Luger P (2002) L-tryptophan formic acid solvate at 183K. Acta Crystallogr C58:o540–o542

    Google Scholar 

  • Hudson MR, Allis DG, Ouellette W, Hudson BS (2009) Inelastic neutron scattering and Raman spectroscopic investigation of L-alanine alaninium nitrate, homologue of a ferroelectric material. Phys Chem Chem Phys 11(41):9474–9483

    CAS  PubMed  Google Scholar 

  • Hussani SS, Dhumane NR, Dongre VG, Shirsat MD (2009) Growth and characterization of an NLO material-crystal of triglycine acetate. Mater Sci-Poland 27(2):365–372

    Google Scholar 

  • Ilayabarathi P, Chandrasekaran J, Maadeswaran P (2013) Synthesis, growth and characterization of L-tyrosine hydrochloride a semi-organic nonlinear optical crystal. Optik 124:1125–1127

    CAS  Google Scholar 

  • Ilczyszyn MM, Ilczyszyn M (2003) Raman, infrared and 13C NMR studies on betaine-sulfamic acid (2:1) crystal and its hydrogen bonds. J Raman Spectrosc 34:693–704

    CAS  Google Scholar 

  • Ilczyszyn MM, Lis T, Baran J, Ratajczak H (1992) Structure and IR spectra of the solid complex of bis(betaine)-telluric acid. J Mol Struct 265:293–310

    CAS  Google Scholar 

  • Ilczyszyn MM, Barnes AJ, Pietraszko A, Ratajczak H (1995a) Structure and vibrational spectra of the solid complex of betaine-sulphuric acid monohydrate. J Mol Struct 354:109–118

    CAS  Google Scholar 

  • Ilczyszyn MM, Lis T, Ratajczak H (1995b) Structure and polarized infrared and Raman spectra of the complex of betaine and maleic acid (1:1). J Mol Struct 372:9–27

    CAS  Google Scholar 

  • Ilczyszyn MM, Wierzejewsk M, Ciunik Z (2000) Crystal structure and vibrational spectra of bis(betaine) sulfamate. Phys Chem Chem Phys 2(15):3503–3510

    CAS  Google Scholar 

  • Ilczyszyn M, Godzisz D, Ilczyszyn MM (2002) Structural and vibrational properties of betainium perchlorate monohydrate crystal and character of its hydrogen bonds. J Mol Struct 611:103–118

    CAS  Google Scholar 

  • Ilczyszyn M, Godzisz D, Ilczyszyn MM (2003) Sarcosine-maleic acid (1:1) crystal: structure, 13C NMR and vibrational properties, protonation character. Spectrochim Acta A 59:1815–1828

    CAS  Google Scholar 

  • Ilczyszyn M, Godzisz D, Ilczyszyn MM (2006) 13C chemical shift tensors of hydrogen bonded amino acids: relation between experimental and calculated results. Chem Phys 323(2–3):231–242

    CAS  Google Scholar 

  • Ilczyszyn M, Chwaleba C, Ciunik Z, Ilczyszyn MM (2008a) Structural role of hydrogen bond networks in amino acid–acid systems. (II) The network with weakly polarizable OHO hydrogen bonds in sarcosine–p-toluenesulfonic acid (1:1) crystal. Chem Phys 352:57–64

    CAS  Google Scholar 

  • Ilczyszyn M, Chwaleba C, Mierzwicki K, Ilczyszyn MM (2008b) Structural role of hydrogen bond networks in aminoacid-acid systems. (I) The network with highly polarizable OHO hydrogen bonds in sarcosine-methanesulfonic acid (2:1) crystal. Chem Phys 351(1–3):99–105, Erratum: Chem Phys 355:196 (2009)

    CAS  Google Scholar 

  • Ilczyszyn MM, Ilczyszyn M, Jesariew D, Baran J, Piecha A (2013) Non-centrosymmetric betaine-selenious crystal. Vibrational, X-ray, calorimetric, and dielectric studies. Vib Spectrosc 66:50–62

    CAS  Google Scholar 

  • Ilyukhin AB, Davidovich RL (1999) Effect of a cation on stereochemical activity of lone electron pair in structures of ethylenediaminetetraacetatoantimonates(III) Cat[Sb(Edta)].xH2O[Cat+=Cs, NMe4, ½{H2En}, NH4, Tl, K, 1/2Mn, 1/2Cd, NH3CH2CH2COOH]. Crystallogr Rep 44(2):204–213

    Google Scholar 

  • Isakov D, de Matos Gomes E, Belsley MS, Rodrigues VH, Costa MMR (2012) Synthesis, structure and non-linear optical properties of L-argininium perrhenate crystal. CrystEngComm 14:3767–3771

    CAS  Google Scholar 

  • Ishida T, Nagata H, In Y, Doi M, Inoue M, Extine MW, Wakahara A (1993) X-Ray crystal structure of L-tryptophan-picric acid charge-transfer complex and comparison with DL-tryptophan-picric acid complex. Chem Pharm Bull 41:433–438

    CAS  Google Scholar 

  • Ittyachan R, Sagayaraj P (2002) Growth and characterisation of L-arginine diphosphate crystal. J Cryst Growth 243:356–360

    CAS  Google Scholar 

  • Ittyachan R, Sagayaraj P (2003a) Growth and characterization of a new NLO L-histidine bromide crystal. J Cryst Growth 249:557–560

    CAS  Google Scholar 

  • Ittyachan R, Sagayaraj P (2003b) Growth and characterization of a new nonlinear optical L-histidine diphosphate single crystal. J Cryst Growth 249:553–556

    CAS  Google Scholar 

  • Ittyachan R, Sagayaraj P, Kthandapani B (2003) L-Argininium bis(dihydrogen phosphate). Acta Crystallogr E59:o886–o888

    Google Scholar 

  • Ittyachan R, Thomas PC, Anand DP, Palanichamy M, Sagayaraj P (2005a) Growth and characterization of semiorganic non-linear optical LHB single crystal. Mater Chem Phys 93:272–276

    CAS  Google Scholar 

  • Ittyachan R, Raja SXJ, Rajasekar SA, Sagayaraj P (2005b) Crystallization and characterization of L-histidinium perchlorate single crystal. Mater Chem Phys 90:10–15

    CAS  Google Scholar 

  • Janarthanan S, Kumar TK, Pandi S, Anand DP (2009) Growth and spectroscopic studies of L-argininium formate NLO single crystals. Indian J Pure Appl Phys 47:332–336

    CAS  Google Scholar 

  • Janczak J, Perptuo GJ (2007) L-Leucinium perchlorate. Acta Crystallogr C63:o117–o119

    Google Scholar 

  • Jarmelo S, Reva I, Rozenberg M, Ramos Silva M, Beja AM, Fausto R (2008) Crystal and molecular structure of DL-serine hydrochloride studied by X-ray diffraction, low-temperature Fourier transform infrared spectroscopy and DFT(B3LYP) calculations. J Phys Chem B112:8032–8041

    Google Scholar 

  • Jeyakumari AP, Dhanuskodi S, Manivannan S (2006) Phase matchable semiorganic NLO material for frequency doubling: L-Arginine tetrafluoroborate. Spectrochim Acta A 63:91–95

    Google Scholar 

  • Jeyanthi CE, Rajarajan K, Siddheswaran R (2010) Investigation on growth and properties of a nonlinear optical crystal, L-lysine glycine dihydrochloride (L-LGHCl). Int J Mater Sci 5(3):431–439

    Google Scholar 

  • Jiang M, Xu D, Tan ZK (1983) A new phase-matchable nonlinear optic L-arginine phosphate monohydrate (LAP). Program and abstracts of VII international conference on crystal growth, Stuttgart, 12–16 Sept 1983, p 267

    Google Scholar 

  • Jin ZM, Pan YJ, Hu ML, Shen L, Li MC (2003) The salt of l-prolinium picrate. Cryst Res Technol 38(11):1009–1012

    CAS  Google Scholar 

  • Jin Y, Che YX, Wei RM, Zheng JM (2004) Preparation and crystal structure of sarcosine 5-nitrosalicylic acid organic adduct. Jiegou Huaxue (Chin J Struct Chem) 23(11):1292–1294

    CAS  Google Scholar 

  • Jinnah MMA, Umadevi M, Ravikumar B, Ramakrishnan V (2004a) Infrared and laser Raman studies of bis(L-threoninium) sulphate monohydrate. Spectrochim Acta A 69:2977–2983

    Google Scholar 

  • Jinnah MMA, Umadevi M, Ramakrishnan V (2004b) Vibrational spectral studies of (β-alanine) β-alaninium nitrate. J Raman Spectrosc 35:956–960

    CAS  Google Scholar 

  • Jiyang W, Gnanam FD, Haussühl S (1986) Crystal growth and physical properties of monoclinic betaine fluoroborate monohydrate, (CH3)3NCH2COO HBF4.H2O. Z Kristallogr 175:155–158

    CAS  Google Scholar 

  • Joema SE, Ramalingam S, Perumal S, Selvarajan P (2011a) Synthesis, growth and studies of pure and ammonium sulfate-doped L-histidine bromide (LHB) single crystals. World J Sci Technol 1(6):33–39

    CAS  Google Scholar 

  • Joema SE, Perumal S, Ramalingam S, Sevarajan P (2011b) Studies on structural, optical, mechanical and thermal properties of undoped and urea-doped L-histidine bromide (LHB) single crystals. Recent Res Sci Technol 3(3):63–68

    CAS  Google Scholar 

  • Johnson MN, Feeder N (2004a) (R)-histidinium (2R,3R)-tartrate. Acta Crystallogr E60:o1476–o1477

    Google Scholar 

  • Johnson MN, Feeder N (2004b) D-histidinium (2S,3S)-tartrate. Acta Crystallogr E60:o1374–o1375

    Google Scholar 

  • Johnson MN, Feeder N (2004c) DL-histidine DL-tartrate. Acta Crystallogr E60:o1273–o1274

    Google Scholar 

  • Joseph AA, Raja CR (2012) Studies on growth and spectral characterization of diglycine fumarate monohydrate single crystals. Spectrochim Acta A 97:1120–1124

    Google Scholar 

  • Joseph AA, Ebenezar IJD, Raja CR (2011) Spectroscopic studies on the influence of 10 mol% of glycine on nonlinear optical crystal L-valinium picrate. Spectrochim Acta A 82:410–413

    CAS  Google Scholar 

  • Joseph AA, Ebenezar IJD, Raja CR (2012) Crystal growth, spectral and NMR studies of nonlinear optical crystal: L-valinium picrate. Optik 123:1436–1439

    CAS  Google Scholar 

  • Kai T, Goto M, Furuhata K, Takayanagi H (1994) Crystal structure of glycine picrate. Anal Sci 10(2):359–360

    CAS  Google Scholar 

  • Kalaiselvi D, Mohan Kumar R, Jayavel R (2008a) Growth and characterization of nonlinear optical L-arginine maleate dihydrate single crystals. Mater Lett 62:755–758

    CAS  Google Scholar 

  • Kalaiselvi D, Mohan Kumar R, Jayavel R (2008b) Crystal growth, thermal and optical studies of semiorganic nonlinear optical material: L-lysine hydrochloride dihydrate. Mater Res Bull 43:1829–1835

    CAS  Google Scholar 

  • Kalaiselvi D, Mohan Kumar R, Jayavel R (2008c) Single crystal growth and properties of semiorganic nonlinear optical L-arginine hydrochloride monohydrate crystals. Cryst Res Technol 43:851–856

    CAS  Google Scholar 

  • Kalaiselvi D, Mohan Kumar R, Jayavel R (2008d) Growth, optical and thermal studies of nonlinear optical L-arginine perchlorate single crystal. Cryst Res Technol 43:645–650

    CAS  Google Scholar 

  • Kalyanaraman AR, Srinivasan R (1971) The crystal structure of DL-ornithine hydrobromide. Acta Crystallogr B27:1420–1427

    Google Scholar 

  • Kannan V, Bairava Ganesh R, Ramasamy P (2006) Growth of new nonlinear optical crystals of hydrochlorides of L-histidine from solution. Cryst Growth Design 6:1876–1880

    CAS  Google Scholar 

  • Kar T (2012) Amino acid-precursors for synthesizing nonlinear optical materials. Prog Cryst Growth Charact Mater 58:74–83

    CAS  Google Scholar 

  • Karapetyan HA (2008) L-Argininium ethyl sulfate. Acta Crystallogr E64:o1982

    Google Scholar 

  • Karapetyan HA, Petrosyan HA, Petrosyan AM (2003) Nonlinear optical crystalline salts of L-histidine. In: Proceedings of conference on “Laser Physics-2003”, Ashtarak, 14–17 Oct 2003, pp 152–155

    Google Scholar 

  • Karle IL, Raganathan D, Haridas V (1996) A persistent preference for layer motifs in self-assemblies of squarates and hydrogen squarates by hydrogen bonding [X-H…O; X=N, O, or C]: a crystallographic study of five organic salts. J Am Chem Soc 118:7128–7133

    CAS  Google Scholar 

  • Kavitha N, Arivanandhan M, Ramamoorthy K, Ragavendran K, Sankaranarayanan K (2004) Microbial inhibition, growth of Li+-doped LAP single crystals and their characterization. Opt Mater 26:275–280

    CAS  Google Scholar 

  • Kavun VY, Didenko NA, Makarenko NV, Slobodyuk AB, Merkulov EB, Uvarov NF, Zemnukhova LA (2012) Thermal properties and ion mobility in complex antimony(III) fluorides with α-amino acids. Russ J Inorg Chem 57(9):1262–1266

    CAS  Google Scholar 

  • Kavuru P, Aboarayes D, Arora KK, Clarke HD, Kennedy A, Marshall L, Ong TT, Perman J, Pujari T, Wojtas Ł, Zaworotko MJ (2010) Hierarchy of supramolecular synthons: persistent hydrogen bonds between carboxylates and weakly acidic hydroxyl moieties in cocrystals of zwitterions. Cryst Growth Design 10:3568–3584

    CAS  Google Scholar 

  • Khandpekar MM (2003) Thermal evaporation of diglycine hydrogen fluoride crystals. Indian J Pure Appl Phys 41:704–706

    CAS  Google Scholar 

  • Khandpekar MM, Pati SP (2010a) Growth, characterization, non-linear optical properties and dislocation studies in new GCF crystals. J Cryst Growth 312:1150–1153

    CAS  Google Scholar 

  • Khandpekar MM, Pati SP (2010b) Growth and characterisation of new non linear optical material α-glycine sulpho-nitrate (GLSN) with stable dielectric and light dependent properties. Optics Commun 283:2700–2704

    CAS  Google Scholar 

  • Khanna RK, Horak M, Lippincott ER (1966) Infrared studied on some ferroelectric compounds of glycine. Spectrochim Acta 22:1801–1811

    CAS  Google Scholar 

  • Kim YK (2000) Physical, chemical and optical properties of aqueous L-arginine phosphate (LAP) solution. J Mater Sci 35:873–880

    CAS  Google Scholar 

  • Kim YK, Lal RB (1998) Physical and optical properties of aqueous L-arginine phosphate (LAP) solution for single-crystal growth. J Mater Sci Lett 17:1363–1365

    CAS  Google Scholar 

  • Kimoto H, Saigo K, Ohashi Y, Hasegawa M (1989) Molecular recognition in the formation of conglomerate crystal. 2. The role of arenesulfonic acid in the conglomerate crystals of amino acid salts. Bull Chem Soc Jpn 62:2189–2195

    CAS  Google Scholar 

  • Kinsel GR, Zhao Q, Narayanasamy J, Yassin F, Dias HVR, Niesner B, Prater K, St. Marie C, Ly L, Marynick DS (2004) Arginine/2,5-dihydroxybenzoic acid clusters: an experimental and computational study of the gas-phase and solid-state systems. J Phys Chem A108:3153–3161

    Google Scholar 

  • Kirfel A, Wallrafen F (1985) The crystal structure of L(+)-glutamic acid hydroiodide, L-C5H9NO4.HI. Z Kristallogr 172:121–128

    Google Scholar 

  • Kirkwood B, Willett RD (1979) β-Alaninium tetrachloroferrate(III). Acta Crystallogr B35:1883–1884

    CAS  Google Scholar 

  • Kirubavathi K, Selvaraju K (2008) Growth and characterization of glycine hydrobromide single crystal for nonlinear optical applications. Mod Phys Lett B 22(21):2035–2042

    CAS  Google Scholar 

  • Kirubavathi K, Selvaraju K, Vijayan N, Kumararaman S (2008a) Synthesis growth and characterization of L-valinium picrate a new nonlinear optical crystal. Spectrochim Acta A 71:288–291

    CAS  Google Scholar 

  • Kirubavathi K, Selvaraju K, Valluvan R, Vijayan N, Kumararaman S (2008b) Synthesis, growth, structural, spectroscopic and optical studies of a new semiorganic nonlinear optical crystal: L-valine hydrochloride. Spectrochim Acta A 69:1283–1286

    CAS  Google Scholar 

  • Kistenmacher TJ, Sorrell T (1974) Further conformational aspects of the amino-acid histidine: crystal and molecular structure of histidine dihydrochloride. J Cryst Mol Struct 4:419–432

    CAS  Google Scholar 

  • Kistenmacher TJ, Hunt DJ, Marsh RE (1972) The crystal and molecular structure of L-N-acetylhistidine monohydrate: an application of direct methods to space group P1. Acta Crystallogr B28:3352–3361

    Google Scholar 

  • Kitamura M (1993) Crystallization behavior and transformation kinetics of L-histidine polymorphs. J Chem Eng Jpn 26:303–307

    CAS  Google Scholar 

  • Kitaoka Y, Yokotani A, Sasaki T (1989) Third harmonic generation of pulsed Nd:YAG laser by an organic optical nonlinear crystal L-arginine phosphate monohydrate. Tech Rep Osaka Univ 39(1966):173–179

    CAS  Google Scholar 

  • Kleinman DA (1962) Nonlinear dielectric polarization in optical media. Phys Rev 126(6):1977–1979

    CAS  Google Scholar 

  • Klussmann M, Izumi T, White AJP, Armstrong A, Blackmond DG (2007) Emergence of solution-phase homochirality via crystal engineering of amino acids. J Am Chem Soc 129:7657–7660

    CAS  PubMed  Google Scholar 

  • Koetzle TF, Lehmann MS, Verbist JJ, Hamilton WC (1972) Precision neutron structure determination of protein and nucleic acid components. VII. The crystal and molecular structure of the amino acid L-lysine monohydrochloride dihydrate. Acta Crystallogr B28:3207–3214

    Google Scholar 

  • Koetzle TF, Golic L, Lehmann MS, Verbist JJ, Hamilton WC (1974) Precision neutron diffraction structure determination of protein and nucleic acid components. XV. Crystal and molecular structure of the amino acid L-valine hydrochloride. J Chem Phys 60:4690–4696

    CAS  Google Scholar 

  • Kolev T, Stahl R, Preut H, Bleckmann P, Radomirska V (1998a) Crystal structure of L-(+)-serinium hydrogensquarate, C7H9NO7. Z Kristallogr NCS 213:169–170

    CAS  Google Scholar 

  • Kolev T, Stahl R, Preut H, Koniczek L, Bleckmann P, Radomirska V (1998b) Crystal structure of bis((L)-(-)-asparaginium hydrogensquarate) monohydrate, (C8H10N2O7)2.H2O. Z Kristallogr NCS 213:167–168

    CAS  Google Scholar 

  • Kolev T, Koleva BB, Spiteller M (2007) Spectroscopic, theoretical and structural characterization of L-threonyl-L-serine and L-serine. Amino Acids 33:719–725

    CAS  PubMed  Google Scholar 

  • Kolev T, Mayer-Figge H, Seidel WR, Sheldrick WS, Spiteller M, Koleva BB (2009) New structural motifs and properties of squaric acid anions in presence of the L-lysinium counterion. J Mol Struct 919:246–254

    CAS  Google Scholar 

  • Koreneva LG, Zolin BF, Davydov BL (1975) Molecular crystals in nonlinear optics. Nauka, Moscow

    Google Scholar 

  • Koreneva LG, Zolin BF, Davydov BL (1985) Nonlinear optics of molecular crystals. Nauka, Moscow

    Google Scholar 

  • Koteeswari P, Mani P, Suresh S (2012) Optical and dielectric studies on L-valinium picrate single crystal. J Cryst Proc Technol 2:117–120

    CAS  Google Scholar 

  • Kotler Z, Hierle R, Josse D, Zyss J, Masse R (1992) Quadratic nonlinear optical properties of new transparent and highly efficient organic-inorganic crystal: 2-amino-5-nitropyridinium dihydrogen phosphate (2A5NPDP). J Opt Soc Am B9:534–547

    Google Scholar 

  • Kozlova OG (1967) Rost kristallov (Crystal growth). Moscow State Univ, Moscow, In Russian

    Google Scholar 

  • Kozlova OG (1972) Rost i morfologia kristallov (Growth and morphology of crystals), 2nd edn. Moscow State University, Moscow, In Russian

    Google Scholar 

  • Kozlova OG (1980) Rost i morfologia kristallov (Growth and morphology of crystals), 3rd edn. Moscow State University, Moscow, In Russian

    Google Scholar 

  • Krause JA, Baures PW, Eggleston D (1991) Histidyl conformations and short N-H…N hydrogen bonds: structure of D, L-histidyl-L, D-histidine pentahydrate. Acta Crystallogr B47:506–511

    CAS  Google Scholar 

  • Kripal R, Pandey S (2011) Single crystal ESR and optical absorption study of Cr3+ doped L-histidine hydrochloride monohydrate. J Phys Chem Solids 72:67–72

    CAS  Google Scholar 

  • Krishnakumar V, Nagalakshmi R (2006) Polarised Raman and infrared spectral analysis of L-alanine oxalate (C5H9NO6)-a non-linear optical single crystal. Spectrochim Acta A 64:736–743

    CAS  Google Scholar 

  • Krishnakumar RV, Natarajan S (1996) Crystal structure of an adduct of sarcosine with sucrose. Carbohydr Res 287:117–122

    CAS  Google Scholar 

  • Krishnakumar RV, Nandhini MS, Natarajan S (1998) Sarcosinium oxalate monohydrate. Acta Crystallogr C54, IUC9800063

    Google Scholar 

  • Krishnakumar RV, Nandhini MS, Natarajan S (2001) Sarcosinium tartrate. Acta Crystallogr C57:165–166

    CAS  Google Scholar 

  • Krishnakumar RV, Nandhini MS, Natarajan S (2002) β-Alaninium oxalate hemihydrate. Acta Crystallogr E58:o117–o119

    Google Scholar 

  • Krishnakumar V, Nagalakshmi R, Manohar S, Kocsis L (2008) Probes on L-lysine monohydrochloride dihydrate: a semiorganic nonlinear optical crystal. Spectrochim Acta A 71:471–479

    CAS  Google Scholar 

  • Krishnakumar V, Nagalakshmi R, Manohar S, Ozga K, Claudet B, Piasecki M, Kityk IV, Kocsis L, Pisarek J (2010) Elastooptical spectra of novel L-lysine monohydrochloride dehydrate single crystals. Int J Mod Phys B 24:629–645

    CAS  Google Scholar 

  • Krummeck H, Knorr K, Haussühl S (1994) The ferroelastic phase transition of betaine borate and maleinate. J Phys Condens Matter 6:L111–L114

    CAS  Google Scholar 

  • Kulik M, Pazio A, Wozniak K (2013) Bis(L-serinium) oxalate dihydrate: polymorph II. Acta Crystallogr E69:o1667–o1668

    Google Scholar 

  • Kumar RP, Athimoolam S, Bahadur SA, Rajaram RK (2005) L-histidinium sulphate. Acta Crystallogr E61:o2419–o2421

    Google Scholar 

  • Kumar PP, Manivannan V, Tamilselvan S, Senthil S, Raj VA, Sagayaraj P, Madhavan J (2008) Growth and characterization of a pure and doped nonlinear optical L-histidine acetate single crystals. Opt Commun 281:2989–2995

    CAS  Google Scholar 

  • Kumara Swamy KC, Kumaraswamy S, Kommana P (2001) Very strong C-H…O, N-H…O, and O-H…O hydrogen bonds involving a cyclic phosphate. J Am Chem Soc 123:12642–12649

    CAS  PubMed  Google Scholar 

  • Kurtz SK, Perry TT (1968) A powder technique for the evaluation of nonlinear optical materials. J Appl Phys 39(8):3798–3813

    CAS  Google Scholar 

  • Kuzminov YS (1987) Electrooptical and nonlinear optical crystal of lithium niobate. Nauka, Moscow (In Russian)

    Google Scholar 

  • Kyriakos M, Karlheinz D (1995) Method for the preparation of salts of L-ornithine. US Patent #5405761

    Google Scholar 

  • Lamberts K, Englert U (2012) DL-Alaninium iodide. Acta Crystallogr E68:o1846

    Google Scholar 

  • Langhoff CA (1990) Theoretical studies of the nonlinear optical properties of L-arginine phosphate. Mater Res Soc Symp Proc 173:677–682

    CAS  Google Scholar 

  • Lazar AN, Danylyuk O, Suwinska K, Coleman AW (2006) The solid-state structure of calix[4]arene dihydroxyphosphonic acid-L-lysine complex. J Mol Struct 825:20–25

    CAS  Google Scholar 

  • Lehmann MS, Koetzle TF, Hamilton WC (1972) Precision neutron diffraction structure determination of protein and nucleic acid components. IV. The crystal and molecular structure of the amino acid L-histidine. Int J Pept Protein Res 4:229–239

    CAS  PubMed  Google Scholar 

  • Lemanov VV, Popov SN, Pankova GA (2002) Piezoelectric properties of crystals of some protein aminoacids and their related compounds. Phys Solid State 44(10):1929–1935

    CAS  Google Scholar 

  • Lemanov VV, Popov SN, Pankova GA (2011) Phase transitions in sarcosine phosphate single crystals. Phys Solid State 53:1274–1276

    CAS  Google Scholar 

  • Lemanov VV, Yarmarkin VK, Egorov VM, Pankova GA, Zaitseva NV, Markova LA (2012) Phase transitions in crystals of protein amino acids with trapped drops of water solutions. Phys Solid State 54(2):346–349

    CAS  Google Scholar 

  • Levene PA, Van Slyke DD (1912) The composition and properties of glycocoll picrate and the separation of glycocoll from alanine. J Biol Chem 12:285–294

    CAS  Google Scholar 

  • Levintow L, Greenstein J (1951) Preparation of D-ornithine, D-citrulline, and D-arginine. J Biol Chem 188(2):643–646

    CAS  PubMed  Google Scholar 

  • L’Haridon P, Lang J, Pastuszak R, Dobrowolski J (1978) Structure cristalline du composé PtCl6-L-lysine. Acta Crystallogr B34:2436–2439

    Google Scholar 

  • Li ZS, Chai JS (2007) Glycinium 3-nitrophtalate. Acta Crystallogr E63:o2857–o2859

    Google Scholar 

  • Li A, Xu C, Li A, Ming N (2000) Study of coloration, microbe inhibition during the growth of L-arginine phosphate monohydrate single crystals. J Cryst Growth 220:291–295

    CAS  Google Scholar 

  • Li MC, Lin CS, Li YQ, He L, Jin ZM (2006) Redetermination of L-valinium chloride monohydrate. Acta Crystallogr E62:o2235–o2236

    Google Scholar 

  • Li J, Liang ZP, Tai XS (2009) Crystal structure of (S)-2-amino-3-(1H-indole-3-yl) propanoic acidate-acitic acid-water (1:1:1), C11H12N2O2.CH3COOH.H2O. Z Kristallogr NCS 224:153–154

    CAS  Google Scholar 

  • Liang P (2008) A cocrystal of pyridine-2,4-dicarboxylic acid and serine. Acta Crystallogr E64:o43

    Google Scholar 

  • Liao CZ, Feng XL, Yao JH, Cai J (2001) Bis(β-alaninium) biphenyl-4,4’-disulfonate. Acta Crystallogr C57:1215–1216

    CAS  Google Scholar 

  • Lima RJC, Feire PTC, Sasaki JM, Melo FEA, Mendes Filho J (2002) Temperature-dependent Raman study of L-arginine hydrochloride monohydrate single crystal. J Raman Spectrosc 33:625–630

    CAS  Google Scholar 

  • Liu WJ, Ferrari C, Zha M, Zanotti L, Jiang SS (2000) X-ray topographic characterization of L-arginine phosphate monohydrate crystals. Cryst Res Technol 35:1215–1219

    CAS  Google Scholar 

  • Liu XJ, Wang ZY, Xu D, Wang XQ, Song YY, Yu WT, Guo WF (2007a) Investigation on the micro-crystallization of L-arginine trifluoroacetate (LATF) crystals. J Alloy Compd 441:323–326

    CAS  Google Scholar 

  • Liu XJ, Wang ZY, Yu GW, Sun ZH, Zhang GH, Wang XQ, Zhu LY, Yu G, Xu D (2007b) Growth morphology of {101} surface of L-arginine trifluoroacetate crystals investigated by AFM. J Phys Chem Solids 68:608–610

    CAS  Google Scholar 

  • Liu XJ, Wang ZY, Duan A, Yu G, Zhang GH, Yu GW, Wang XQ, Sun ZH, Xu D (2007c) AFM investigation of the {101} morphology of L-arginine trifluoroacetate (LATF) crystals. Solid State Sci 9:527–530

    CAS  Google Scholar 

  • Liu XJ, Wang ZY, Zhang G, Yu G, Wang X, Duan A, Fan J, Xu D (2007d) Atomic force microscopy studies on {101} surfaces of L-arginine trifluoroacetate single crystals. J Phys Chem C 111:14165–14169

    CAS  Google Scholar 

  • Liu XJ, Wang ZY, Zhang G, Wang X, Duan A, Sun Z, Zhu L, Xu D (2007e) Crystal growth of high quality nonlinear optical crystals of L-arginine trifluoroacetate. J Cryst Growth 308:130–132

    CAS  Google Scholar 

  • Liu XJ, Wang ZY, Zhang G, Yu G, Wang X, Xu D (2008a) Nucleation growth mechanism and defects of nonlinear optical crystals of L-Arg.CF3COOH. Mater Lett 62:1986–1988

    CAS  Google Scholar 

  • Liu XJ, Wang ZY, Duan A, Zhang G, Wang X, Sun Z, Zhu L, Yu G, Sun G, Xu D (2008b) Measurement of L-arginine trifluoroacetate crystal nucleation kinetics. J Cryst Growth 310:2590–2592

    CAS  Google Scholar 

  • Liu XJ, Wang ZY, Wang XQ, Zhang GH, Xu SX, Duan A, Zhang SJ, Sun ZH, Xu D (2008c) Morphology and physical properties of L-arginine trifluoroacetate crystals. Cryst Growth Design 8:2270–2274

    CAS  Google Scholar 

  • Liu XJ, Wang Z, Zhang G, Yu G, Duan A, Wang X, Xu D (2009) Distinct growth phenomenon observed on L-Arg.CF3COOH crystals. Curr Appl Phys 9:22–25

    Google Scholar 

  • Liu XJ, Xu D, Wei XQ, Ren MJ, Zhang GH (2010a) Growth of Cu2+ and Mg2+ doped nonlinear optical LATF crystals and their characterization. Mater Sci Eng B 166:203–208

    CAS  Google Scholar 

  • Liu XJ, Wang PJ, Zhang Z, Xu D, Zhang GH, Wang XQ (2010b) Imaging of surface morphologies of L-arginine trifluoroacetate crystals. Curr Appl Phys 10:715–717

    Google Scholar 

  • Liu XJ, Xu D, Ren MJ, Zhang GH, Wei XQ, Wang J (2010c) An examination of the growth kinetics of L-arginine trifluoroacetate (LATF) crystals from induction period and atomic force microscopy investigations. Cryst Growth Design 10:3442–3447

    CAS  Google Scholar 

  • Liu XJ, Wang P, Xu D, Wei X (2011) Observation of the kinetic roughening of L-arginine trifluoroacetate (LATF) crystals. Cryst Growth Design 11:791–795

    CAS  Google Scholar 

  • Liu XJ, Yan S, Ren M (2013) Theoretical investigations of optical properties of L-arginine trifluoroacetate crystal. Mater Chem Phys 143:286–291

    Google Scholar 

  • Losev EA, Zakharov BA, Drebushchak TN, Boldyreva EV (2011) Glycinium semi-malonate and a glutaric acid-glycine cocrystal: new structures with O-H…O hydrogen bonds. Acta Crystallogr C67:o297–o300

    Google Scholar 

  • Lucia Rose ASJ, Selvarajan P, Perumal S (2010) Synthesis, growth and spectroscopic studies of L-alanine hydrogen chloride (LAHC) crystals. Recent Res Sci Technol 2(3):76–79

    CAS  Google Scholar 

  • Lucia Rose ASJ, Selvarajan P, Perumal S (2011a) Studies on growth and characterization of an NLO crystal: L-alanine hydrogen chloride (LAHC). Mater Chem Phys 130:950–955

    CAS  Google Scholar 

  • Lucia Rose ASJ, Selvarajan P, Perumal S (2011b) Growth, structural, spectral, mechanical and dielectric characterization of RbCl-doped L-alanine hydrogen chloride monohydrate single crystals. Physica B 406:412–417

    CAS  Google Scholar 

  • Łukaszewicz K, Pietraszko A, Stepien-Damm J (1996a) Redetermination of the crystal structure of paraelectric diglycine nitrate. Part I. Crystal structure at 220K and 293K. Pol J Chem 70(11):1414–1418

    Google Scholar 

  • Łukaszewicz K, Pietraszko A, Stepien-Damm J (1996b) Redetermination of the crystal structure of paraelectric diglycine nitrate. Part II. Short-range order at 220K and 293K. Pol J Chem 70(12):1550–1553

    Google Scholar 

  • MacDonald JC, Yigit M, Mychajlonka K (2005) Two concomitant polymorphs of a supramolecular model of the Asp…His…Ser catalytic triad. Cryst Growth Design 5(6):22248–22255

    Google Scholar 

  • Machado FLA, Sousa LLL, Cunha RO, Cabral FAO, Rodrigues AR, Carvalho JF, Santana RC (2010) Specific heat measurements in pure and in (Cu, Mn, Fe, Ni)-doped single-crystals of L-arginine phosphate monohydrate. J Phys Chem Solids 71:862–866

    CAS  Google Scholar 

  • Machida M, Ikeda H, Kakiuchi T, Ishibashi T, Hasebe K (2003) NMR study of phase transitions in betaine phosphite (CH3)3NCH2COOH.H2PO3. J Phys Soc Jap 72:2250–2255

    CAS  Google Scholar 

  • Madden JJ, McGandy EL, Seeman NC (1972a) The crystal structure of the orthorhombic form of L-(+)-histidine. Acta Crystallogr B28:2377–2382

    Google Scholar 

  • Madden JJ, McGandy EL, Seeman NC, Harding MM, Hoy A (1972b) The crystal structure of the monoclinic form of L-histidine. Acta Crystallogr B28:2382–2389

    Google Scholar 

  • Madhavan J, Aruna S, Prabha K, Packium Julius J, Joseph GP, Selvakumar S, Sagayaraj P (2006a) Growth and characterization of a novel NLO crystal L-histidine hydrofluoride dihydrate (LHHF). J Cryst Growth 293:409–414

    CAS  Google Scholar 

  • Madhavan J, Aruna S, Ambujam K, Pragasam JA, Ravikumar SM, Gulam Mohamed M, Sagayaraj P (2006b) Crystallization and characterization of nonlinear optical L-histidinium dihydrogen orthophosphate orthophosphoric acid single crystal. Cryst Res Technol 41:997–1001

    CAS  Google Scholar 

  • Madhavan J, Aruna S, Thomas PC, Vimalan M, Rajasekar SA, Sagayaraj P (2007a) Growth and characterization of L-histidine hydrochloride monohydrate single crystals. Cryst Res Technol 42:59–64

    CAS  Google Scholar 

  • Madhavan J, Aruna S, Anuradha A, Remanand D, Potheher IV, Thamizharasan K, Sagayaraj P (2007b) Growth and characterization of a new nonlinear optical L-histidine acetate single crystals. Opt Mater 29:1211–1216

    CAS  Google Scholar 

  • Magome E, Machida M, Tamura Y, Komukae M (2007) Isotope effect of glycinium phosphate NH3CH2COOH.H2PO3. J Phys Soc Jap 76:124601

    Google Scholar 

  • Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187(4736):493–494

    Google Scholar 

  • Majerz I, Malarski Z, Sobczyk L (1997) Proton transfer and correlations between the C-O, O-H, N-H and O…N bond lengths in amine phenolates. Chem Phys Lett 274:361–364

    CAS  Google Scholar 

  • Maker PD, Terhune RW, Nisenoff M, Savage CM (1962) Effects of dispersion and focusing on the production of optical harmonics. Phys Rev Lett 8(1):21–22

    Google Scholar 

  • Mallik T, Kar T (2005a) Optical, thermal and structural characterization of an NLO crystal, L-arginine perchlorate. J. Crystal Growth 274:251–255

    CAS  Google Scholar 

  • Mallik T, Kar T (2005b) Synthesis, crystal structure and solubility of C6H14N4O2, C4H4O4, 2H2O. Sci Tech Adv Mater 6:508–512

    CAS  Google Scholar 

  • Mallik T, Kar T (2005c) Synthesis, growth and characterization of a new nonlinear optical crystal: l-arginine maleate dihydrate. Cryst Res Technol 40:778–781

    CAS  Google Scholar 

  • Mallik T, Kar T (2007) Crystallization and characterization of nonlinear optical material L-arginine formomaleate. Mater Lett 61:3826–3828

    CAS  Google Scholar 

  • Manimaran D, John CJ, Rastogi VK, Hubert Joe I (2013) Growth and vibrational spectral investigation of nonlinear optical L-Argininium perchlorate-DFT study. Spectrochim Acta A 109:173–178

    CAS  Google Scholar 

  • Marchewka MK, Drozd M (2013) L-leucine perchlorate: new molecular complex with nonlinear optical properties. Vibrational, calorimetric and theoretical studies. Cent Eur J Chem 11(8):1264–1277

    CAS  Google Scholar 

  • Marchewka MK, Debrus S, Ratajczak H (2003a) Vibrational spectra and second harmonic generation in molecular complexes of L-lysine with L-tartaric, D, L-malic, acetic, arsenous, and fumaric acids. Cryst Growth Design 3(4):587–592

    CAS  Google Scholar 

  • Marchewka MK, Debrus S, Pirtraszko A, Barnes AJ, Ratajczak H (2003b) Crystal structure, vibrational spectra and nonlinear optical properties of L-histidinium-L-tartrate hemihydrates. J Mol Struct 656(1–3):265–273

    CAS  Google Scholar 

  • Marcy HO, Warren LF, Webb MS, Ebbers CA, Velsko SP, Kennedy G, Catella GC (1992) Second-harmonic generation in zinc tris(thiourea) sulfate. Appl Optics 31:5051–5061

    CAS  Google Scholar 

  • Marcy HO, Rosker MJ, Warren LF, Cunningham PH, Thomas CA, Deloach LA, Velsko SP, Ebbers CA, Liao JH, Kanatzidis MG (1995) L-Histidine tetrafluoroborate: a solution-grown semiorganic crystal for nonlinear frequency conversion. Opt Lett 20:252–254

    CAS  PubMed  Google Scholar 

  • Marder SR, Perry JW, Schaefer WP (1989) Synthesis of organic salts with large second-order optical nonlinearities. Science 245:626–628

    CAS  PubMed  Google Scholar 

  • Martin Britto Dhas SA, Natarajan S (2007a) Growth and characterization of a new organic NLO material: glycine nitrate. Optics Commun 278:434–438

    Google Scholar 

  • Martin Britto Dhas SA, Natarajan S (2007b) Growth and characterization of L-prolinium tartrate – a new organic NLO material. Cryst Res Technol 42:471–476

    Google Scholar 

  • Martin Britto Dhas SA, Natarajan S (2008a) Growth and characterization of two new NLO materials from the amino acid family: L-Histidine nitrate and L-Cysteine tartrate monohydrate. Optics Commun 281:457–462

    CAS  Google Scholar 

  • Martin Britto Dhas SA, Natarajan S (2008b) Growth and characterization of a new potential second harmonic generation material from the amino acid family: L-Valinium picrate. Cryst Res Technol 43(8):869–873

    Google Scholar 

  • Martin Britto Dhas SA, Suresh M, Raji P, Ramachandran K, Natarajan S (2007) Photoacoustic studies on two new organic materials: L-threonine and L-prolinium tartrate. Cryst Res Technol 42:190–194

    Google Scholar 

  • Martin Britto Dhas SA, Bhagavannarayana G, Natarajan S (2008a) Growth and characterization of a new potential NLO material from the amino acid family-L-prolinium picrate. J Cryst Growth 310:3535–3539

    CAS  Google Scholar 

  • Martin Britto Dhas SA, Suresh J, Bhagavannarayana G, Natarajan S (2008b) Growth and characterization of a new organic non-linear optical (NLO) material: L-histidinium trifluoroacetate. Open Crystallogr J 1:46–50

    Google Scholar 

  • Mata I, Espinosa E, Molins E, Veintemillas S, Maniukiewicz W, Lecomte C, Cousson A, Paulus W (2006) Contributions to the application of the transferability principle and the multipolar modeling of H atoms: electron-density study of L-histidinium dihydrogen orthophosphate orthophosphoric acid. I. Acta Crystallogr A62:365–378

    CAS  Google Scholar 

  • Mathivanan V, Raghavalu T, Kovendhan M, Gokul Raj S, Ramesh Kumar G, Mohan R, Kumar KS (2007) Synthesis, growth and characterization of L-histidinium acetate dihydrate single crystals. Cryst Res Technol 42:895–898

    CAS  Google Scholar 

  • Mathivanan V, Raghavalu T, Kovendhan M, Kumar KS, Gokul Raj S, Ramesh Kumar G, Mohan R (2008) Synthesis and characterization of a new nonlinear optical single crystal: L-lysinium trifluoroacetate. Cryst Res Technol 43:248–252

    CAS  Google Scholar 

  • Matthias BT, Miller CE, Remeika JP (1956) Ferroelectricity of glycine sulfate. Phys Rev 104(3):849–850

    CAS  Google Scholar 

  • Mazumdar SK, Srinivasan R (1964) X-ray analysis of L-arginine hydrohalides. Curr Sci 33:573–575

    CAS  Google Scholar 

  • Mazumdar SK, Srinivasan R (1966) The crystal structure of L-arginine monohydrobromide monohydrate. Z Kristallogr 123(Suppl):186–205

    CAS  Google Scholar 

  • Mazumdar SK, Venkatesan K, Mez HC, Donohue J (1969) The crystal structure of L-arginine hydrochloride. Z Kristallogr 130:328–339

    CAS  Google Scholar 

  • Mazumder A, Kar T, Gupta SPS (1995) Infrared spectroscopy and thermal studies of as-grown L-arginine phosphate monohydrate crystals. Jpn J Appl Phys 34(Part 1):5717–5720

    CAS  Google Scholar 

  • Mebs S, Messerschmidt M, Luger P (2006) Experimental charge density of an L-phenylalanine formic acid complex with a short hydrogen bond determined at 25K. Z Kristallogr 221(9):656–664

    CAS  Google Scholar 

  • Meena M, Mahadevan CK (2008) Growth and dielectric properties of L-arginine acetate and L-arginine oxalate single crystals. Mater Lett 62:3742–3744

    CAS  Google Scholar 

  • Meena M, Mahadevan CK (2010) Effect of added impurities on the electrical properties of L-arginine acetate single crystals. Archiv Appl Sci Res 2:185–199

    Google Scholar 

  • Meera K, Muralidharan R, Dhanasekaran R, Manyum P, Ramasamy P (2004) Growth of nonlinear optical material: L-arginine hydrochloride and its characterisation. J Cryst Growth 263:510–516

    CAS  Google Scholar 

  • Miller RC (1964) Optical second harmonic generation in piezoelectric crystals. Appl Phys Lett 5(1):17–19

    CAS  Google Scholar 

  • Minemoto H, Ozaki Y, Sonoda N, Sasaki T (1993) Intracavity second harmonic generation using a deuterated organic ionic crystal. Appl Phys Lett 63:3565–3567

    CAS  Google Scholar 

  • Minkov VS, Boldyreva EV (2008) L-Cysteinium semioxalate. Acta Crystallogr C64:o344–o348

    Google Scholar 

  • Minkov VS, Boldyreva EV (2009) DL-Cysteinium semioxalate. Acta Crystallogr C65:o245–o247

    Google Scholar 

  • Minkov VS, Boldyreva EV (2011) L-Cysteinium semioxalate: a new monoclinic polymorph or a hydrate? Acta Crystallogr C67:o139–o142

    Google Scholar 

  • Minkov VS, Boldyreva EV (2012) The effect of partial methylation of the glycine amino group on crystal structure in N, N-dimethylglycine and its hemihydrates. Acta Crystallogr C68:o283–o287

    Google Scholar 

  • Minkov VS, Boldyreva EV, Drebushchak TN, Görbitz CH (2012) Stabilizing structures of cysteine-containing crystal with respect to variations of temperature and pressure by immobilizing amino acid side chains. CrystEngComm 14:5943–5954

    CAS  Google Scholar 

  • Mishra AK, Muril C, Garg N, Chitra R, Sharma SM (2010) Pressure-induced structural transformations in bis(glycinium)oxalate. J Phys Chem B114:17084–17091

    Google Scholar 

  • Mitsui Y, Tsuboi M, Iitaka Y (1969) The crystal structure of DL-proline hydrochloride. Acta Crystallogr B25:2182–2192

    Google Scholar 

  • Mohan Kumar R, Gopalakrishnan N, Jayavel R, Ramasamy P (1999) Investigation on the nucleation kinetics of L-arginine phosphate single crystals. Cryst Res Technol 34:1265–1268

    Google Scholar 

  • Mohandas T, Inbaseelan CRT, Saravanan S (2013) Glycine-D-tartaric acid (1/1). Acta Crystallogr E69:o236

    Google Scholar 

  • Mohandoss R, Dhanuskodi S, Jayalakshmy MS, Philip J, Bhagavannarayana G (2012) Structural, electrical, thermal and optical properties of the nonlinear optical crystal L-arginine fluoride. Cryst Res Technol 47:620–629

    Google Scholar 

  • Moitra S, Kar T (2008) Second harmonic generation of a new nonlinear optical material L-valine hydrobromide. J Cryst Growth 310:4539–4543

    CAS  Google Scholar 

  • Moitra S, Seth SK, Kar TG (2010) Synthesis, crystal structure, characterization and DFT studies of L-valine L-valinium hydrochloride. J Cryst Growth 312(12–13):1977–1982

    CAS  Google Scholar 

  • Molčanov K, Kojić-Prodić B (2010) Salts and co-crystals of chloranilic acid with organic bases: is it possible to predict a salt formation? CrystEngComm 12:925–939

    Google Scholar 

  • Monaco SB, Davis LE, Velsko SP, Wang FT, Eimerl D, Zalkin A (1987) Synthesis and characterization of chemical analogs of L-arginine phosphate. J Cryst Growth 85(1–2):252–255

    CAS  Google Scholar 

  • Moolya BN, Dharmaprakash SM (2005) X-ray diffraction, vibrational spectra and thermal studies of nonlinear optical L-tyrosine hydrochloride single crystals. Indian J Phys 79(12):1423–1425

    CAS  Google Scholar 

  • Moolya BN, Darmaprakash SM (2006) Nonlinear optical diglycine hydrochloride: synthesis, crystal growth and structural characteristics. J Cryst Growth 293(1):86–92

    Google Scholar 

  • Moolya BN, Dharmaprakash SM (2006) Synthesis, growth and characterization of nonlinear optical crystal: L-tyrosine hydrobromide. J Cryst Growth 290:498–503

    CAS  Google Scholar 

  • Moolya BN, Dharmapraksh SM (2007) Growth and characterization of nonlinear optical diglycinehydrobromide single crystals. Mater Lett 61(17):3559–3562

    CAS  Google Scholar 

  • Moolya BN, Rai C, Dharmaprakash SM, Harrison WTA (2007) Sodium tris(glycinium)bis(hexafluorosilicate) glycine trisolvate. Acta Crystallogr C63:m312–m314

    Google Scholar 

  • Moovendaran K, Srinivasan BR, Sundar JK, Martin Britto Dhas SA, Natarajan S (2012) Structural, vibrational and thermal studies of a new nonlinear optical material: L-Asparagine–L-tartaric acid. Spectrochim Acta A 92:388–391

    CAS  Google Scholar 

  • Moovendaran K, Martin Britto Dhas SA, Natarajan S (2013) Growth and characterization of L-histidinium 2-nitrobenzoate single crystals: a new NLO material. Optik 124:3117–3119

    CAS  Google Scholar 

  • Mostad A, Natarajan S (1985) Crystal and molecular structure of DL-methionine nitrate. Z Kristallogr 172:175–182

    CAS  Google Scholar 

  • Mostad A, Natarajan S (1995) Crystal and molecular structure of L-(S)-histidine dihidrochloride (monoclinic form). Z Kristallogr 210:114–117

    CAS  Google Scholar 

  • Mostad A, Natarajan S (1996) Crystal structures of an adduct of sarcosine with sulfuric acid (at 140K). Cryst Res Technol 31(3):295–300

    CAS  Google Scholar 

  • Mostad A, Nistol KA, Romming C, Natarajan S (1995) Crystal and molecular structure of L-(+)-histidine acetate dihydrate (at 123 K). Z Kristallogr 210:352–354

    CAS  Google Scholar 

  • Mukerji S, Kar T (1998a) Thermal and spectroscopic studies of as-grown L-arginine hydrochloride monohydrate crystals. Mater Chem Phys 57:72–76

    CAS  Google Scholar 

  • Mukerji S, Kar T (1998b) Structural, thermal and spectroscopic investigation of nonlinear optical crystal L-arginine hydrobromide monohydrate. Mater Res Bull 33:619–626

    CAS  Google Scholar 

  • Mukerji S, Kar T (1999a) Surface micromorphology of different crystallographic faces of L-arginine hydrochloride monohydrate etched in organic solvents. Jpn J Appl Phys 38(Part 1, No. 2A):832–837

    CAS  Google Scholar 

  • Mukerji S, Kar T (1999b) Etch pit study of different crystallographic faces of L-arginine hydrobromide monohydrate (LAHBr) in alcohols. J Cryst Growth 200:543–549

    CAS  Google Scholar 

  • Mukerji S, Kar T (1999c) Vicker’s microhardness studies of L-arginine hydrobromide monohydrate crystals (LAHBr). Cryst Res Technol 34:1323–1328

    CAS  Google Scholar 

  • Mukerji S, Kar T (2000a) Microhardness study of the nonlinear optical L-arginine hydrochloride monohydrate. Metal Mater Trans 31A:3087–3090

    CAS  Google Scholar 

  • Mukerji S, Kar T (2000b) Knoop microhardness anisotropy and Young’s modulus of L-arginine hydrochloride monohydrate and L-arginine hydrobromide monohydrate. Mater Res Bull 35:711–717

    CAS  Google Scholar 

  • Mukhopadhyay BP, Ghosh S, Banerjee A (1995) Role of water molecules in protein-nucleic acid interactions: visualization of a model highly hydrated complex structure of Inosine 5´-monophosphate and L-Serine (2C10H13N4O8P.C3H7NO3.12H2O) at atomic resolution. J Chem Crystallogr 25(8):477–485

    CAS  Google Scholar 

  • Muralidharan R, Rkumar M, Jayavel R, Ramasamy P (2003) Growth and characterization of L-arginine acetate single crystals: a new NLO material. J Cryst Growth 259:321–325

    CAS  Google Scholar 

  • Muralidharan S, Nagapandiselvi P, Srinivasan T, Gopalakrishnan R, Velmurugan D (2013) L-Histidinium p-toluenesulfonate. Acta Crystallogr E69(5):o804

    Google Scholar 

  • Mythili P, Kanagasekaran T, Gopalakrishnan R (2008) Growth and characterization of glycinium oxalate (GOX) single crystals. Mater Lett 62:2185–2188

    Google Scholar 

  • Nabakhtiani GN, Furmanova NG, Chachkhiani LG (1992) X-ray structural study of L-arginine hydrobromide monohydrate C6H14O2N4HBr.H2O. Kristallografia 37:1185–1192

    CAS  Google Scholar 

  • Nagashima N, Sano C, Kawakita T, Iitaka Y (1992) The crystal structure of di-L-phenylalanine sulphate monohydrate. Anal Sci 8:723–725

    CAS  Google Scholar 

  • Nagashima N, Kishimoto S, Tanabe T, Iitaka Y (1993) Crystal structure of L-histidine and α-ketoisocaproic acid complex ethanol solvate. Anal Sci 9:743–745

    CAS  Google Scholar 

  • Nagata H, In Y, Tomoo K, Doi M, Ishida T, Wakahara A (1995) Structural feature and molecular interaction of basic amino acid-picric acid complexes by X-ray crystal analyses. Chem Pharm Bull 43(11):1836–1843

    CAS  Google Scholar 

  • Nalbandyan AG, Sukiasyan RP, Novikov EV, Van Stryland EW, Petrosyan AM (2000) Investigation of growth conditions of lysine trihydrogen iodate crystals. In: Proceedings of conference on Laser Physics-99, Ashtarak, 18–22 Oct 1999, pp 128–132

    Google Scholar 

  • Nandhini MS, Krishnakumar RV, Natarajan S (2001a) Glycinium oxalate. Acta Crystallogr C57:115–116

    Google Scholar 

  • Nandhini MS, Krishnakumar RV, Natarajan S (2001b) L-Alanine oxalate. Acta Crystallogr E57:o633–o635

    Google Scholar 

  • Nandhini MS, Krishnakumar RV, Natarajan S (2001c) DL-Alaninium oxalate. Acta Crystallogr E57:o666–o668

    Google Scholar 

  • Nandhini MS, Krishnakumar RV, Malathi R, Rajan SS, Natarajan S (2001d) DL-Threoninium oxalate. Acta Crystallogr E57:o769–o771

    Google Scholar 

  • Nandhini MS, Krishnakumar RV, Natarajan S (2001e) L-Prolinium tartrate. Acta Crystallogr C57:423–424

    Google Scholar 

  • Narayanan P, Venkataraman S (1975) Crystal and molecular structure of monoglycine nitrate. J Cryst Mol Struct 5:15–26

    CAS  Google Scholar 

  • Natarajan S, Zangrando E (1992) Crystal structure of bisglycine hydrobromide – a reinvestigation. Proc Indian Acad Sci Chem Sci 104(4):483–487

    CAS  Google Scholar 

  • Natarajan S, Muthukrishnan C, Bahadur SA, Rajaram RK, Rajan SS (1992) Reinvestigation of the crystal structure of diglycine hydrochloride. Z Kristallogr 198:265–270

    CAS  Google Scholar 

  • Natarajan S, Martin Britto SA, Ramachandran E (2006) Growth, thermal, spectroscopic, and optical studies of L-alaninium maleate, a new organic nonlinear optical material. Cryst Growth Design 6:137–140

    CAS  Google Scholar 

  • Natarajan S, Shanmugam G, Martin Britto Dhas SA (2008a) Growth and characterization of a new semi organic NLO material: L-tyrosine hydrochloride. Cryst Res Technol 43(5):561–564

    CAS  Google Scholar 

  • Natarajan S, Chitra GP, Martin Britto Dhas SA, Athimoolam S (2008b) Growth, structural, thermal and optical studies on L-glutamic acid hydrobromide – a new semiorganic NLO material. Cryst Res Technol 43:713–719

    CAS  Google Scholar 

  • Natarajan S, Devi NR, Martin Britto Dhas SA, Athimoolam S (2008c) Crystal growth and structure of L-methionine L-methioninium hydrogen maleate-a new NLO material. Sci Technol Adv Mater 9:025012 (5 p)

    Google Scholar 

  • Natarajan V, Arivanandhan M, Sankaranarayanan K, Ramasamy P (2009a) Growth aspects and characteristic properties of pure and Li-doped L-arginine acetate (LAA) single crystals: a promising nonlinear optical material. J Cryst Growth 311:572–575

    CAS  Google Scholar 

  • Natarajan S, Kalyanasundar A, Suresh J, Martin Britto Dhas SA, Lakshman PLN (2009b) Glycinium hydrogen fumarate glycine solvate monohydrate. Acta Crystallogr E65:o462

    Google Scholar 

  • Natarajan S, Umamaheswaran M, Sundar JK, Suresh J, Martin Britto Dhas SA (2010a) Structural, spectroscopic and nonlinear optical studies on a new efficient organic donor-acceptor crystal for second harmonic generation: L-Threoninium picrate. Spectrochim Acta A 77:160–163

    CAS  Google Scholar 

  • Natarajan S, Hema V, Sundar JK, Suresh J, Lakshman PLN (2010b) L-Asparagine-L-tartaric acid (1/1). Acta Crystallogr E66:o2239

    Google Scholar 

  • Natarajan S, Devi NR, Martin Britto Dhas SA, Athimoolam S (2010c) Growth, thermal and optical studies of a new organic NLO material: L-methionine L-methioninium hydrogen maleate. Optoelectron Adv Mat-Rapid Commun 4(4):516–519

    CAS  Google Scholar 

  • Natarajan S, Moovendaran K, Sundar JK, Bhagavannarayana G, Martin Britto Dhas SA (2011) Influence of picric acid on the SHG efficiency of L-prolinium tartrate crystals. J Miner Mater Charact Eng 10:913–921

    Google Scholar 

  • Natarajan S, Moovendaran K, Sundar JK, Ravikumar K (2012) Crystal structure of L-histidinium 2-nitrobenzoate. J Amino Acids 2012:463183

    PubMed  PubMed Central  Google Scholar 

  • Neelam R, Vijayan N, Thukral K, Maurya KK, Haranath D, Bhagavannarayana G, Verma S, Wahab MA (2013) Crystalline perfection, optical and third harmonic generation analyses of non-linear optical single crystal of L-lysine acetate. Spectrochim Acta A 105:192–199

    Google Scholar 

  • Němec I (1998) Preparation and study of addition compounds of aminoacids with inorganic oxyacids. PhD thesis, Charles University in Prague, Faculty of Science

    Google Scholar 

  • Němec I, Mička Z (1999) FTIR and FT Raman study of L-leucine addition compound with nitric acid. J Mol Struct 482–483:23–28

    Google Scholar 

  • Němec I, Mička Z (2001a) FTIR and FT Raman study of L-leucine-selenic acid addition compound. J Mol Struct 563–564:295–299

    Google Scholar 

  • Němec I, Mička Z (2001b) Tri-L-valine selenate-study of vibrational spectra and structural phase transition. J Mol Struct 563–564:289–294

    Google Scholar 

  • Němec I, Cisarová I, Mička Z (1998) Study of the glycine-selenious acid addition compounds: crystal structure of glycine hydrogen selenite and vibrational spectra and DSC measurement of diglycine hydrogen selenious acid crystals. J Solid State Chem 140(1):71–82

    Google Scholar 

  • Němec I, Cisarová I, Mička Z (1999a) The crystal structure, vibrational spectra and DSC measurement of mono-L-alaninium nitrate. J Mol Struct 476:243–253

    Google Scholar 

  • Němec I, Gyepes R, Mička Z (1999b) The crystal structure, vibrational spectra and DSC measurements of mono-β-alaninium nitrate. J Mol Struct 476:203–213

    Google Scholar 

  • Němec I, Cisarová I, Mička Z (2001) The crystal structure and vibrational spectra of mono-L-valinium nitrate: DSC, FTIR, and X-ray diffractional study of low-temperature phase transition. J Solid State Chem 158:1–13

    Google Scholar 

  • Němec I, Gyepes R, Mička Z, Trojánek F (2002) Novel materials for second harmonic generation of L-valine and selenic acid. Mater Res Soc Proc 725:9.2.1–P9.2.6

    Google Scholar 

  • Nepomnyashaya VN, Shternberg AA, Gavrilova IV (1961) Laboratornaya metodikavyrashivania krupnykh ogranennykh kristallov i orientirovannykh blokov sulfata litia (Laboratory technique for growing of large faceted crystals and oriented blocks of lithiumsulphate). In: Rost kristallov, III:209–295 (In Russian)

    Google Scholar 

  • Nockemann P, Thijs B, Pittois S, Thoen J, Glorieux C, Van Hecke K, Van Meervelt L, Kirchner B, Binnemans K (2006) Task-specific ionic liquid for solubilizing metal oxides. J Phys Chem B110:20978–20992

    Google Scholar 

  • Novak A (1979) Vibrational spectroscopy of hydrogen bonded systems. In: Infrared and Raman spectroscopy of biological molecules. Proceedings of the NATO Advanced Study Institute, Athens, 22–31 Aug 1978. D. Reidel Publishing Company, Dordrecht, pp 279–303

    Google Scholar 

  • Oda K, Koyama H (1972) A refinement of the crystal structure of histidine hydrochloride monohydrate. Acta Crystallogr B28:639–642

    Google Scholar 

  • Ojala WH, Sudbeck EA, Lu LK, Richardson TI, Lovrien RE, Gleason WB (1996) Complexes of lysine, histidine, and arginine with sulfonated azo dyes: model systems for understanding the biomolecular recognition of glycosaminoglycans by proteins. J Am Chem Soc 118:2131–2142

    CAS  Google Scholar 

  • Okamura K, Aoe K, Hiramatsu H, Nishimura N, Sato T, Hashimoto K (1997) Crystal structure of diastereomeric 1:1 complex of (R)- and (S)-phenylalanine (S)-mandelic acid. Anal Sci 13:315–317

    CAS  Google Scholar 

  • Olejnik S, Łukaszewicz K, Lis T (1975) Diglycine selenate. Acta Crystallogr B31:1785–1787

    CAS  Google Scholar 

  • Olejnik S, Łukaszewicz K, Wratislava AU (1977) Mat F As. 43 CSD code: TGLYSE10

    Google Scholar 

  • Ondráček J, Walzelová M, Mička Z, Novotný J (1992) Structure of glycine-selenious acid (1/1). Acta Crystallogr C48:391–392

    Google Scholar 

  • Owens C, Bhat K, Wang WS, Tan A, Aggarwal MD, Penn BG, Fraizier DO (2001) Bulk growth of high quality nonlinear optical crystals of L-arginine tetrafluoroborate (L-AFB). J Cryst Growth 225:465–469

    CAS  Google Scholar 

  • Ozga K, Krishnakumar V, Kityk IV, Jasik-Ślęzak J (2008) L-lysine monohydrochloride dihydrate as novel elasto- and electrooptical materials. Mater Lett 62:4597–4600

    CAS  Google Scholar 

  • Packiam Julius J, Rajasekar SA, Pragasam JAA, Joseph V, Sagayaraj P (2004a) Growth, microhardness and optical characterization of L-arginine hydrofluoride (LAHF) single crystals. Mater Sci Eng B107:259–263

    Google Scholar 

  • Packiam Julius J, Rajasekar SA, Rajasekar SA, Selva Kumar S, Stephen A, Sagayaraj P (2004b) Studies on the growth and characterization of L-argininium formate single crystals. J Cryst Growth 267:619–623

    Google Scholar 

  • Padmaja L, Vijayakumar T, Hubert Joe I, Nair CPR, Jayakumar VS (2006) Vibrational spectral studies and the nonlinear optical properties of a novel NLO material L-prolinium tartrate. J Raman Spectrosc 37:1427–1441

    CAS  Google Scholar 

  • Paixão JA, Matos Beja A, Ramos Silva M, Alte da Veiga L, Martín-Gil J, Martín-Gil F, de Matos Gomes E (1997) Crystal structure of betaine dihydrogen selenite, C5H13NO5Se. Z Kristallogr NCS 212:51–52

    Google Scholar 

  • Paixão JA, Ramos Silva M, Matos Beja A, Eusébio E (2006) Crystal structure and properties of L-tryptophanium hydrogen selenite. Polyhedron 25:2021–2025

    Google Scholar 

  • Pal T, Kar T (2002) Single crystal growth and characterization of the nonlinear optical crystal L-arginine hydrofluoride. J Cryst Growth 234:267–271

    CAS  Google Scholar 

  • Pal T, Kar T (2003) Vickers microhardness studies of L-arginine halide mixed crystals. Mater Sci Eng A354:331–336

    CAS  Google Scholar 

  • Pal T, Kar T (2005a) Studies on growth defects and mechanical properties of nonlinear optical crystal: L-arginine hydrofluoride. J Cryst Growth 276:247–252

    CAS  Google Scholar 

  • Pal T, Kar T (2005b) Studies of microhardness anisotropy and Young’s modulus of nonlinear optical crystal L-arginine hydrochlorobromo monohydrate. Mater Lett 59:1400–1404

    CAS  Google Scholar 

  • Pal T, Kar T (2005c) Optical, mechanical and thermal studies of nonlinear optical crystal L-arginine acetate. Mater Chem Phys 91:343–347

    CAS  Google Scholar 

  • Pal T, Kar T (2006a) Studies on surface micromorphology and growth mechanism of nonlinear optical crystal: l-arginine hydrochlorobromo monohydrate. J Cryst Growth 289:202–206

    Google Scholar 

  • Pal T, Kar T (2006b) Studies on mechanical properties of an organic nonlinear optical crystal. Mater Sci Eng A 437:235–239

    Google Scholar 

  • Pal T, Kar T, Zhou GY, Wang XQ, Wang D, Chen XF, Yang ZH (2002) Growth and characterization of nonlinear optical material, LAHClBr-a new member of L-arginine halide family. J Cryst Growth 235:523–528

    CAS  Google Scholar 

  • Pal T, Kar T, Bocelli G, Rigi L (2003) Synthesis, growth, and characterization of L-arginine acetate crystal: a potential NLO material. Cryst Growth Design 3:13–16

    CAS  Google Scholar 

  • Pal T, Kar T, Bocelli G, Rigi L (2004) Morphology, crystal structure, and thermal and spectral studies of semiorganic nonlinear optical crystal LAHClBr. Cryst Growth Design 4:743–747

    CAS  Google Scholar 

  • Pan F, Wong MS, Bosshard C, Günter P (1996) Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST). Adv Mater 8:592–595

    CAS  Google Scholar 

  • Pandiarajan S, Sridhar B, Rajaram RK (2001a) L-Valine L-valinium perchlorate monohydrate. Acta Crystallogr E57(5):o466–o468

    Google Scholar 

  • Pandiarajan S, Sridhar S, Rajaram RK (2001b) β-Alaninium perchlorate. Acta Crystallogr E57:o1130–o1132

    Google Scholar 

  • Pandiarajan S, Sridhar B, Rajaram RK (2002a) L-Methioninium nitrate. Acta Crystallogr E58:o882–o884

    Google Scholar 

  • Pandiarajan S, Sridhar B, Rajaram RK (2002b) Bis(L-proline) hydrogen nitrate. Acta Crystallogr E58(8):o862–o864

    Google Scholar 

  • Pandiarajan S, Sridhar B, Rajaram RK (2002c) Bis(L-proline) hydrogen(1+) perchlorate. Acta Crystallogr E58:o74–o76

    Google Scholar 

  • Pandiarajan S, Umadevi M, Briget Mary M, Rajaram RK, Ramakrishnan V (2004) Infrared and Raman spectroscopic studies of L-methioninium nitrate. J Raman Spectrosc 35:907–913

    CAS  Google Scholar 

  • Pandiarajan S, Umadevi M, Sasirekha V, Rajaram RK, Ramakrishnan V (2005a) FT-IR and FT-Raman spectral studies of bis(L-proline) hydrogen nitrate and bis(L-proline) hydrogen perchlorate. J Raman Spectrosc 36:950–961

    CAS  Google Scholar 

  • Pandiarajan S, Umadevi M, Rajaram RK, Ramakrishnan V (2005b) Infrared and Raman spectroscopic studies of L-valine L-valinium perchlorate monohydrate. Spectrochim Acta A 62:630–636

    CAS  Google Scholar 

  • Pandiarajan S, Rajaram RK, Ramakrishnan V (2005c) Vibrational spectral studies of β-alaninium perchlorate. J Raman Spectrosc 36:785–790

    CAS  Google Scholar 

  • Panicker L, Sakuntala T (2010) DSC and Raman studies of diglycine-perchlorate (DGPCl) doped TGS. AIP Conf Proc 1313:334–336

    CAS  Google Scholar 

  • Panicker L, Sakuntala T (2011) Raman spectroscopic and DSC studies of diglycine-perchlorate (DGPCl). Vib Spectrosc 57:270–274

    CAS  Google Scholar 

  • Panicker L, Mathur P, Mobin SM (2011) Crystal structure and phase transition of diglycine perchlorate. J Chem Crystallogr 41:147–154

    CAS  Google Scholar 

  • Parthasarathy R (1966) The structure of L-valine hydrochloride. Acta Crystallogr 21:422–426

    CAS  PubMed  Google Scholar 

  • Pepinsky R, Okaya Y, Jona F (1957) Ferroelectricity and structure of tri-glycine fluoroberyllate and isomorphs. Bull Am Phys Soc 2(4):220

    Google Scholar 

  • Pepinsky R, Vedam K, Hoshino S, Okaya Y (1958) Ferroelectricity in di-glycine nitrate (NH2CH2COOH)2.HNO3. Phys Rev 111(2):430–432

    CAS  Google Scholar 

  • Pereira Silva PS, Domingos SR, Ramos Silva M, Paixão JA, Matos Beja A (2008) N, N, V-Triphenylguanidinium 5-nitro-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-ide. Acta Crystallogr E64:o1082–o1083

    Google Scholar 

  • Periasamy M, Venkatraman L, Thomas KRJ (1997) New methods of resolution and enrichment of enantiomeric excesses of 1,1'-bi-2-naphthol. J Org Chem 62:4302–4306

    CAS  PubMed  Google Scholar 

  • Petrosyan AM (2004) Formation mechanisms of nonlinear optical crystalline salts of L-arginine and L-histidine. In: Proceedings of conference on “Laser Physics-2003”, Ashtarak, 14–17 Oct 2003, pp 148–151

    Google Scholar 

  • Petrosyan AM (2006a) Vibrational spectra of L-arginine tetrafluoroborate and L-arginine perchlorate. Vib Spectrosc 41:97–100

    CAS  Google Scholar 

  • Petrosyan AM (2006b) L-arginine ethylsulfate. In: Proceedings of conference on Laser Physics-2005, Ashtarak, 11–14 Oct 2005, pp 123–126

    Google Scholar 

  • Petrosyan HA (2007a) Nonlinear optical properties of L-histidine salts. In: Proceedings of conference on Laser Physics-2007, Ashtarak, 9–12 Oct 2007, pp 60–63

    Google Scholar 

  • Petrosyan AM (2007b) Vibrational spectra of L-histidine perchlorate and L-histidine tetrafluoroborate. Vib Spectrosc 43:284–289

    CAS  Google Scholar 

  • Petrosyan AM (2008a) Comment on the paper by Sankar R, R. Muralidharan, C.M. Rahgavan, Mohan Kumar R, Jayavel R, “Synthesis, growth, and characterization of nonlinear optical material L-arginine iodate crystal”, Materials Letters 62(1), 133–136 (2008). Mater Lett 62:3305–3306

    CAS  Google Scholar 

  • Petrosyan AM (2008b) Comment on the paper “Growth and characterization of a new non-linear optical L-histidinium dihydrogen phosphate single crystal”, V. Rajendran et al., Materials Letters 61 (2007) 3477–3479. Mater Lett 62:3782

    CAS  Google Scholar 

  • Petrosyan HA (2009) Preparation and investigation of nonlinear optical crystals on the basis of L-histidine. Dissertation, Yerevan, 139 p (In Russian)

    Google Scholar 

  • Petrosyan AM (2010a) Salts of L-histidine as nonlinear optical materials: a review. J Cryst Phys Chem 1(1):33–56

    CAS  Google Scholar 

  • Petrosyan AM (2010b) Comment on “Growth and characterization of glycine picrate single crystal” by Uma Devi T et al., Spectrochim. Acta A71 (2008) 340–343. Spectrochim Acta A 75:1176

    Google Scholar 

  • Petrosyan AM, Ghazaryan VV (2009) Vibrational spectra of L-lysine monohydrochloride dihydrate and its two anhydrous forms. J Mol Struct 917(1):56–62

    CAS  Google Scholar 

  • Petrosyan AM, Petrosyan HA (2002) New salts of L-histidine. In: Proceedings of conference on “Laser Physics-2002”, Yerevan-Ashtarak, 15–18 Oct 2002, pp 83–88

    Google Scholar 

  • Petrosyan AM, Shishkin VA (1996) Correlation between structural, infrared and nuclear quadrupole resonance data of iodates. Z Naturforsch 51a:667–671

    Google Scholar 

  • Petrosyan AM, Sukiasyan RP (2008) Vibrational spectra of L-arginine nitrates. J Mol Struct 874:51–56

    CAS  Google Scholar 

  • Petrosyan AM, Sukiasyan RP, Nalbandyan AG, Kochikyan RV, Aghajanyan AE (1995) Search for new nonlinear optical crystals. In: Proceedings of conference on Laser Physics-95, Ashtarak, 17–22 Oct 1995, pp 15–22 (In Russian)

    Google Scholar 

  • Petrosyan AM, Terzyan SS, Burbelo VM, Sukiasyan RP (1998) Investigation of some new nonlinear optical crystals by means of NQR, IR and X-ray diffraction methods. Z Naturforsch 53a:528–536

    Google Scholar 

  • Petrosyan AM, Sukiasyan RP, Terzyan SS, Burbelo VM (1999) Interaction of lysine with iodic acid. Acta Crystallogr B55:221–225

    CAS  Google Scholar 

  • Petrosyan AM, Burbelo VM, Tamazyan RA, Karapetyan HA, Sukiasyan RP (2000a) NQR in alanine and lysine iodates. Z Naturforsch 55(1/2):199–206

    CAS  Google Scholar 

  • Petrosyan AM, Sukiasyan RP, Karapetyan HA, Terzyan SS, Feigelson RS (2000b) Growth and investigation of new nonlinear optical crystals of LAP family. J Cryst Growth 213(1/2):103–111

    CAS  Google Scholar 

  • Petrosyan AM, Feigelson RS, Van Stryland EW, Sukiasyan RP, Karapetyan HA (2002) New class of nonlinear optical crystals among arginine salts. Proc SPIE 4751:217–222

    CAS  Google Scholar 

  • Petrosyan AM, Karapetyan HA, Bush AA, Sukiasyan RP (2004a) Crystal structure and characterization of L-arginine dichloride monohydrate and L-arginine dibromide monohydrate. Mater Chem Phys 84(1):79–86

    CAS  Google Scholar 

  • Petrosyan AM, Alchangyan SV, Petrosyan HA (2004b) Growth of L-histidine perchlorate crystals. Abstracts of 14-th international conference on Crystal Growth (ICCG-14), 9–13 Aug 2004, Grenoble, p 537

    Google Scholar 

  • Petrosyan AM, Karapetyan HA, Sukiasyan RP, Aghajanyan AE, Morgunov VG, Kravchenko EA, Bush AA (2005a) Crystal structure and characterization of L-arginine chlorate and L-arginine bromate. J Mol Struct 752:144–152

    CAS  Google Scholar 

  • Petrosyan AM, Sukiasyan RP, Karapetyan HA, Antipin MA, Apreyan RA (2005b) L-arginine oxalates. J Cryst Growth 275(1/2):e1927–e1933

    CAS  Google Scholar 

  • Petrosyan HA, Karapetyan HA, Antipin MY, Petrosyan AM (2005c) Nonlinear optical crystals of L-histidine salts. J Cryst Growth 275:e1919–e1925

    CAS  Google Scholar 

  • Petrosyan HA, Karapetyan HA, Petrosyan AM (2005d) L-histidine trifluoroacetate. Report presented at the conference on Laser Physics–2005, Ashtarak, 11–14 Oct 2005

    Google Scholar 

  • Petrosyan HA, Karapetyan HA, Petrosyan AM (2006) L-histidine nitrates. J Mol Struct 794:160–167

    CAS  Google Scholar 

  • Petrosyan HA, Karapetyan HA, Atanesyan AK, Petrosyan AM (2007) Nonlinear optical crystals of L-histidine oxalates. In: Proceedings of conference on “Laser Physics-2007”, Ashtarak, 9–12 Oct 2007, pp 56–59

    Google Scholar 

  • Petrosyan HA, Apreyan RA, Hovhannesyan AA, Atanesyan AK, Petrosyan AM (2009a) Nonlinear optical activity and spectroscopy of L-nitrohistidine monohydrate. J Contemp Phys (Armenian Acad Sci) 44(1):43–49

    Google Scholar 

  • Petrosyan HA, Karapetyan HA, Ghazaryan VV (2009b) New approach for searching nonlinear optical materials among salts of amino acids. In: Proceedings of conference on “Laser Physics-2008”, Ashtarak, 14–17 Oct 2008, pp 63–66

    Google Scholar 

  • Petrosyan HA, Karapetyan HA, Atanesyan AK, Petrosyan AM (2010a) L-histidine sulfates. J Mol Struct 963(2–3):168–174

    CAS  Google Scholar 

  • Petrosyan AM, Fleck M, Ghazaryan VV (2010b) Mixed salts of amino acids: syntheses, crystal structure and vibrational spectra of L-histidinium(2+) nitrate-perchlorate and L-histidinium(2+) nitrate-tetrafluoroborate. Z Kristallogr 225(9):388–395

    CAS  Google Scholar 

  • Petrosyan AM, Ghazaryan VV, Fleck M (2011a) On the infrared spectrum of L-lysinium(2+) sulfate. Spectrochim Acta A 79:2020–2022

    CAS  Google Scholar 

  • Petrosyan AM, Ghazaryan VV, Fleck M (2011b) Comments on the papers recently published by M.M. Khandpekar et al. Optics Commun 284:4295–4296

    CAS  Google Scholar 

  • Petrosyan AM, Ghazaryan VV, Fleck M (2012a) On the existence of “bis-glycine maleate”. J Cryst Growth 359:129–131

    CAS  Google Scholar 

  • Petrosyan AM, Ghazaryan VV, Fleck M, Harutyunyan AV, Andriasyan LH, Brsikyan NA (2012b) Hexafluorosilicates of amino acids having anti-caries activity. Armenian Patent #2695

    Google Scholar 

  • Petrosyan AM, Ghazaryan VV, Fleck M (2013a) On the existence of “L-threonine formate”, “L-alanine lithium chloride” and “bis L-alanine lithium chloride” crystals. Spectrochim Acta A 105:623–625

    CAS  Google Scholar 

  • Petrosyan AM, Fleck M, Ghazaryan VV (2013b) Reinvestigation of L-tryptophan picrate: establishment of the existence of the L-tryptophan L-tryptophanium dimeric cation. Spectrochim Acta A 104:486–491

    CAS  Google Scholar 

  • Petrosyan AM, Fleck M, Ghazaryan VV (2014) New mixed salts of L-histidinium(2+) comprising hexafluorosilicate anion. J Cryst Growth. doi:http://dx.doi.org/10.1016/j.jcrysgro.2013.10.060

  • Petrov TG, Treivus EB, Kasatkin AP (1967) Vyrashivanie kristallov iz rastvorov (Growing crystals from solutions). Nedra, Leningrad (In Russian)

    Google Scholar 

  • Petrov TG, Treivus EB, Kasatkin AP (1969) Growing crystals from solutions. Plenum Publishing Corporation, New York

    Google Scholar 

  • Petrov TG, Treivus EB, Punin YO, Kasatkin AP (1983) Vyrashivanie kristallov izrastvorov (Growing crystals from solutions), 2nd edn. Nedra, Leningrad (In Russian)

    Google Scholar 

  • Philip D, Aruldhas G (1995) Infrared, polarized Raman, and SERS spectra of betaine hydrogen oxalate monohydrate. J Solid State Chem 114:129–137

    CAS  Google Scholar 

  • Piret P, Meunier-Piret J, Verbist J, Van Meerssche M (1972) Structure crystalline de derives d’acides amines VI. Le composÕ HI.2glycine. Bull. Soc. Chim. Belges 81:539–546

    Google Scholar 

  • Ponmani SLM, Selvarajan P, Balasundari N, Jencylin D (2011) Growth and characterization of a novel bis β-alanine picrate (BBAP) single crystal. Int J Curr Res 2(1):086–091

    Google Scholar 

  • Portalone G (2010) Supramolecular association in proton-transfer adducts containing benzamidinium cations. I. Four molecular salts with uracil derivatives. Acta Crystallogr C66:o295–o301

    Google Scholar 

  • Prabu MM, Nagendra HG, Suresh S, Vijayan M (1996) X -ray studies on crystalline complexes involving amino acids and peptides XXXI. Effect of chirality on ionization state, stoichiometry and aggregation in the complexes of oxalic acid with L- and DL-histidine. J Biomol Struct Dyn 14:387–392

    CAS  PubMed  Google Scholar 

  • Pragasam AJA, Selvakumar S, Thamizharasan K, Prem Anand D, Sagayaraj P (2005a) Growth and optical characterization of Cu- and Mg- substituted L-arginine di phosphate single crystals. J Cryst Growth 280:271–278

    Google Scholar 

  • Pragasam AJA, Selvakumar S, Madhavan J, Prem Anand D, Sagayaraj P (2005b) Effect of metallic substitution on the optical, mechanical and photoconducting properties of L-arginium diphosphate single crystals. Indian J Pure Appl Phys 43:463–468

    CAS  Google Scholar 

  • Pragasam AJA, Madhavan J, Gulam Mohamed M, Selvakumar S, Ambujam K, Sagayaraj P (2006) Growth and characterization of amino acid (glycine and valine) substituted diphosphate single crystals. Opt Mater 29:173–179

    CAS  Google Scholar 

  • Prakash M, Greetha D, Caroline ML (2011a) Crystal growth and characterization of L-phenylalaninium trichloroacetate – A new organic nonlinear optical material. Physica B 406:2621–2625

    CAS  Google Scholar 

  • Prakash M, Greetha D, Caroline ML, Ramesh PS (2011b) Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-Phenylalanine L-phenylalaninium malonate. Spectrochim Acta A 83(1):461–466

    CAS  Google Scholar 

  • Prasad GS, Vijayan M (1990) X-ray studies of crystalline complexes involving amino acids. XIX. Effects of change in chirality in the succinic acid with DL and L-arginine. Int J Pept Protein Res 35(4):357–364

    CAS  PubMed  Google Scholar 

  • Prasad GS, Vijayan M (1991) X-ray studies on crystalline complexes involving amino acids and peptides. XXIII. Variability in ionization state, conformation and molecular aggregation in the complexes of succinic acid with DL- and L-lysine. Acta Crystallogr B47:927–935

    CAS  Google Scholar 

  • Prasad GS, Vijayan M (1993a) X -ray studies on crystalline complexes involving amino acids and peptides XXIV. Ionization states and novel aggregation patterns in the complexes of succinic acid with DL- and L-histidine. Biopolymers 33(2):283–292

    CAS  Google Scholar 

  • Prasad GS, Vijayan M (1993b) X-ray studies on crystalline complexes involving amino acids and peptides. XXV. Structures of DL-proline hemisuccinic acid and glycyl-L-histidinium semisuccinate monohydrate and a comparative study of amino-acid and peptide complexes of succinic acid. Acta Crystallogr B49:348–356

    CAS  Google Scholar 

  • Pratap JV, Vijayan M, Ravishankar R (2000) X-ray studies on crystalline complexes involving amino acids and peptides. XXXV. Invariance and variability in amino acid aggregation in the complexes of maleic acid with L-histidine and L-lysine. Acta Crystallogr B56:690–696

    CAS  Google Scholar 

  • Preema CT, Kumar LB, Anurandha A, Aruna S, Joseph GP, Sagayaraj P (2006) Growth and characterization of nonlinear optical single crystals of L-arginine diiodate. J Cryst Growth 290:560–564

    Google Scholar 

  • Preema CT, Aruna S, Nadhavan J, Ittyachan R, Pragasam JA, Jesudurai JGM, Prabha K, Sagayaraj P (2007) Growth and thermal studies of nonlinear optical L-argininium diiodate. L-argininium dinitrate and L-argininium hydrochloride bromide single crystals. Indian J Pure Appl Phys 45:591–595

    Google Scholar 

  • Preethy Menon C, Philip J, Deepthy A, Bhat HL (2001) Thermal properties of glycine phosphate across ferroelectric phase transition: a photopyroelectric study. Mater Res Bull 36:2407–2414

    Google Scholar 

  • Puccetti G, Perigaud A, Badan J, Ledoux I, Zyss J (1993) 5-Nitrouracil: a transparent and efficient nonlinear organic crystal. J Opt Soc Am 10:733–744

    CAS  Google Scholar 

  • Pushilin MA, Gerasimenko AV, Davidovich RL (2007) Bis(DL-valinium) pentafluoridooxidoniobate(V). Acta Crystallogr E63:m2086

    Google Scholar 

  • Qui DT, Vicat J, Durif A (1984) Structure of telluric acid-glycine (1:2) monohydrate, Te(OH)6.2C2H5NO2.H2O, at 120K and determination of hydrogen positions. Acta Crystallogr C40(1):181–184

    Google Scholar 

  • Qui DT, Lambert-Andron B, Boucherle JX (1987) Neutron refinement of telluric acid-glycine (1/2) monohydrate. Acta Crystallogr C43(5):907–909

    CAS  Google Scholar 

  • Raghavalu T, Kumar KS, Kumar GR, Raj SG, Mohan R (2007) L-Lysinium trichloroacetate. Acta Crystallogr E63:o1706–o1707

    Google Scholar 

  • Ragowska P, Cyrański MK, Sporzyński A, Ciesieelski A (2006) Evidence for strong heterodimeric interactions of phenylboronic acids with amino acids. Tetrahedron Lett 47:1389–1393

    Google Scholar 

  • Raj KR, Murugakoothan P (2011) Studies on the effect of Ba2+ on growth, structural, morphology, optical and mechanical properties of L-valinium picrate. J Miner Mater Charact Eng 10(10):973–987

    Google Scholar 

  • Raj KR, Murugakoothan P (2013) Effect of Co2+ on the growth and physical properties of potential nonlinear optical L-asparaginium picrate crystal. Optik 124:2696–2700

    CAS  Google Scholar 

  • Raj KR, Bhagavannarayana G, Murugakoothan P (2013) Studies on the effect of nickel on growth, structural, optical, electrical, thermal and mechanical properties of L-valinium picrate. Optik 124:493–500

    CAS  Google Scholar 

  • Rajagopal K, Krishnakumar RV, Mostad A, Natarajan S (2001a) Glycinium maleate. Acta Crystallogr E57:o751–o753

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Natarajan S (2001b) β-Alaninium maleate. Acta Crystallogr E57:o922–o924

    Google Scholar 

  • Rajagopal K, Nandhini MS, Krishnakumar RV, Mostad A, Natarajan S (2002a) Sarcosinium maleate at 123K. Acta Crystallogr E58:o478–o480

    Google Scholar 

  • Rajagopal K, Nandhini MS, Krishnakumar RV, Natarajan S (2002b) L-Alanine tartrate. Acta Crystallogr E58:o1306–o1308

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Nandhini MS, Mostad A, Natarajan S (2002c) DL-Valinium trichloroacetate at 123K. Acta Crystallogr E58:o279–o281

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Nandhini MS, Mostad A, Natarajan S (2003a) β-Alaninium trichloroacetate at 105K. Acta Crystallogr E59:o206–o208

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Nandhini MS, Cameron TS, Natarajan S (2003b) L-Phenylalaninium trichloracetate. Acta Crystallogr E59:o1084–o1086

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Mostad A, Natarajan S (2003c) DL-Methioninium trichloroacetate at 123K. Acta Crystallogr E59:o31–o33

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Nandhini MS, Malathi R, Rajan SS, Natarajan S (2003d) L-Leucinium oxalate. Acta Crystallogr E59:o878–o880

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Mostad A, Natarajan S (2003e) L-Prolinium trichloroacetate at 105K. Acta Crystallogr E59:o277–o279

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Nandhini MS, Natarajan S (2003f) L-histidinium hemihydrochloride tartrate tartaric acid dihydrate. Acta Crystallogr E59:o955–o958

    Google Scholar 

  • Rajagopal K, Franklin RD, Krishnakumar RV, Ravikumar K, Natarajan S (2004a) DL-Threonine trichloroacetate. Acta Crystallogr E60:o1355–o1357

    Google Scholar 

  • Rajagopal K, Ramachandran E, Mostad A, Natarajan S (2004b) DL-Threoninium maleate at 150K. Acta Crystallogr E60:o386–o388

    Google Scholar 

  • Rajagopal K, Krishnakumar RV, Natarajan S (2005) DL-Phenylalaninium trichloroacetate. Acta Crystallogr E61:o203–o205

    Google Scholar 

  • Rajan Babu D, Jayaraman D, Mohan Kumar R, Ravi G, Jayavel R (2003) Growth aspects of semi-organic nonlinear optical L-arginine tetrafluoroborate single crystals. J Cryst Growth 250:157–161

    Google Scholar 

  • Rajendran KV, Jayaraman D, Jayavel R, MohanKumar R, Ramasamy P (2001) Growth and characterization of non-linear optical L-hystidine tetrafluoroborate (L-HFB) single crystals. J Cryst Growth 224(1–2):122–127

    CAS  Google Scholar 

  • Rajendran KV, Jayaraman D, Jayavel R, Ramasamy P (2003a) Effect of pH on the growth and characterization of L-HFB single crystal. J Cryst Growth 254(3–4):461–468

    CAS  Google Scholar 

  • Rajendran KV, Rajasekaran R, Jayaraman D, Jayavel R, Ramasamy P (2003b) Experimental determination of metastable zone width, induction period, interfacial energy and growth of non-linear optical L-HFB single crystals. Mater Chem Phys 81:50–55

    CAS  Google Scholar 

  • Rajendran KV, Jayaraman D, Jayavel R, Ramasamy P (2003c) Growth and characterization of nonlinear optical crystal: L-histidinium bromide. J Cryst Growth 255:361–368

    CAS  Google Scholar 

  • Rajendran V, Shamala D, Loganayaki M, Ramasamy P (2007) Growth and characterization of a new non-linear optical L-histidinium dihydrogen phosphate single crystal. Mater Lett 61:3477–3479

    CAS  Google Scholar 

  • Rajkumar BJM, Ramakrishnan V (2000) Infrared and Raman spectra of L-valine nitrate and L-leucine nitrate. J Raman Spectrosc 31:1107–1112

    CAS  Google Scholar 

  • Rajkumar BJM, Ramakrishnan V (2001) Vibrational spectroscopic study of DL-methionine dihydrogen phosphate. Spectrochim Acta A 57:247–254

    CAS  Google Scholar 

  • Rajkumar BJM, Ramakrishnan V (2002) Infrared and laser Raman studies of L-phenylalanine L-phenylalaninium perchlorate and bis(DL-phenylalaninium) sulphate monohydrate. Spectrochim Acta A 58(9):1923–1934

    Google Scholar 

  • Rajkumar BJM, Ramakrishnan V, Rajaram RK (1998) Infrared and Raman spectra of DL-aspartic acid nitrate monohydrate. Spectrochim Acta A 54:1527–1532

    Google Scholar 

  • Rajkumar BJM, Ramakrishnan V, Bahadur SA (1999) Infrared and Raman spectra of DL-histdininium dinitrate and L-histidinium sulphamate. J Raman Spectrosc 30:589–594

    CAS  Google Scholar 

  • Ramajothi J, Dhanuskodi S (2003) Optical and microhardness studies of semiorganic nonlinear optical material: L-histidine tetrafluoroborate. Cryst Res Technol 38:986–991

    CAS  Google Scholar 

  • Ramajothi J, Dhanuskodi S (2006) Crystal growth, thermal and optical studies on phase matchable new organic NLO material for blue-green laser generation. J Cryst Growth 289:217–223

    CAS  Google Scholar 

  • Ramajothi J, Dhanuskodi S (2007) Crystal growth, thermal and optical studies on a semiorganic nonlinear optical material for blue-green laser generation. Spectrochim Acta A 68:1213–1219

    CAS  Google Scholar 

  • Ramajothi J, Dhanuskodi S, Akkurt M (2008) Crystal growth of phase matchable new organic nonlinear material for UV laser generation. Spectrochim Acta A 69:1271–1276

    CAS  Google Scholar 

  • Ramanathan CR, Periasamy M (1998) Resolution of C 2 -symmetric 9,10-dihydro-9,10, ethanoanthracene-11,12-dicarboxylic acid and 2,3-diphenylsuccinic acid using (S)-proline. Tetrahedron Asymmetry 9:2651–2656

    CAS  Google Scholar 

  • Ramaswamy S, Sridhar B, Ramakrishnan V, Rajaram RK (2001) L-argininium dinitrate. Acta Crystallogr E57:o872–o874

    Google Scholar 

  • Ramaswamy S, Sridhar B, Ramakrishnan V, Rajaram RK (2002) L-ornithine nitrate. Acta Crystallogr E58:o646–o648

    Google Scholar 

  • Ramaswamy S, Umadevi M, Rajaram RK, Ramakrishnan V (2003a) Infrared and Raman spectral studies of L-ornithine nitrate. J Raman Spectrosc 34:806–812

    CAS  Google Scholar 

  • Ramaswamy S, Rajaram RK, Ramakrishnan V (2003b) Vibrational spectroscopic studies of L-argininium dinitrate. J Raman Spectrosc 34:50–56

    CAS  Google Scholar 

  • Ramaswamy S, Sridhar B, Ramakrishnan V, Rajaram RK (2004a) Bis(DL-methioninium) sulfate. Acta Crystallogr E60:o1691–o1693

    Google Scholar 

  • Ramaswamy S, Sridhar B, Ramakrishnan V, Rajaram RK (2004b) Bis(L-ornithinium) chloride nitrate sulfate. Acta Crystallogr E60:o768–o770

    Google Scholar 

  • Ramaswamy S, Sridhar B, Ramakrishnan V, Rajaram RK (2005) Vibrational spectra of bis(L-ornithinium) chloride nitrate sulfate. J Raman Spectrosc 36(1):12–17

    CAS  Google Scholar 

  • Ramesh Babu R, Vijayan N, Gopalakrishnan R, Ramasamy P (2006a) Growth and characterization of L-lysine monohydrochloride dihydrate (L-LMHCl) single crystal. Cryst Res Technol 41:405–410

    Google Scholar 

  • Ramesh Babu R, Sethuraman K, Gopalakrishnan R, Ramasamy P (2006b) Growth of L-lysine monohydrochloride dihydrate bulk single crystal by Sankaranarayanan-Ramasamy (SR) method. J Cryst Growth 297:356–360

    Google Scholar 

  • Ramesh Babu R, Sethuraman K, Vijayan N, Bhagavannarayana G, Gopalakrishnan R, Ramasamy P (2006c) Etching and dielectric studies on L-lysine monohydrochloride dihydrate single crystal. Cryst Res Technol 41:906–910

    Google Scholar 

  • Ramesh Kumar G, Gokul Raj S, Mohan R, Jayavel R (2006) Structural, thermal, linear and nonlinear optical studies on new NLO crystal: DL-Threonium trichloroacetate. J Rare Earths 24:249–252

    Google Scholar 

  • Ramos Silva M, Matos Beja A, Paixão JA, Alte da Veiga L, Martin-Gil J (1999a) Crystal structure of betainium hexafluorotantalum(IV) dihydrate, (C5H12NO2)2TaF6.2H2O. Z Kristallogr NCS 214(4):477–478

    CAS  Google Scholar 

  • Ramos Silva M, Matos Beja A, Paixão JA, Alte da Veiga L, Martin-Gil J (1999b) L-argininum tris(acetato-O, O´)dioxouranium(III)-acetic acid-water (1/1/1). Acta Crystallogr C55:2039–2041

    Google Scholar 

  • Ramos Silva M, Matos Beja A, Paixão JA, Alte da Veiga L, Martin-Gil J (1999c) Crystal structure of L-arginine diphenylacetate C6H15N4O2 + · C14H11O2 . Z Kristallogr NCS 214(3):326–328

    Google Scholar 

  • Ramos Silva M, Paixão JA, Matos Beja A, Alte da Veiga L (2000a) Crystal structure of the nonlinear optical compound L-arginine fluoride. J Chem Cryst 30(6):411–414

    Google Scholar 

  • Ramos Silva M, Paixão JA, Matos Beja A, Alte da Veiga L (2000b) Very short F-H · · · F hydrogen bond in L-argininium fluoride hydrogen fluoride. Acta Crystallogr B56(1):104–106

    Google Scholar 

  • Ramos Silva M, Paixão JA, Matos Beja A, Alte da Veiga L (2000c) Crystal structure of L-argininium hexafluorovanadate trihydrate, (C6H15N4O2)3VF6.3H2O. Z Kristallogr NCS 215:178–180

    CAS  Google Scholar 

  • Ramos Silva M, Paixão JA, Matos Beja A, Alte da Veiga L (2001) Strong hydrogen-bonded amino acid dimers in L-alanine alaninium nitrate. Acta Crystallogr C57(7):838–840

    CAS  Google Scholar 

  • Ramos Silva M, Paixão JA, Matos Beja A (2003) L-argininium bis (trifluoroacetate). Acta Crystallogr E59:o1912–o1914

    Google Scholar 

  • Ramos Silva M, Matos Beja A, Paixão JA (2004) Very short O-H…hydrogen bond in L-histidinium difluoride. J Fluor Chem 125:695–699

    CAS  Google Scholar 

  • Ramos Silva M, Paixão JA, Matos Beja A (2005a) Crystal structure of L-tryptophanium phosphite, (C11H13N2O2)[H2PO3]. Z Kristallogr NCS 220:487–488

    Google Scholar 

  • Ramos Silva M, Matos Beja A, Paixão JA (2005b) Tris(L-argininium) hexafluorochromate(III) trihydrate. Acta Crystallogr E61:m2459–m2461

    Google Scholar 

  • Rani JS, Mahadevan CK, Antony Arockiaraj M, Rajasekar S, Vimalan M (2013) Growth and characterization of semiorganic nonlinear optical LHHCl-LHB mixed crystals. Archiv Appl Sci Res 5(2):213–221

    Google Scholar 

  • Rao ST (1969) Crystal structure of L-valine hydrochloride monohydrate. Z Kristallogr 128:339–351

    CAS  Google Scholar 

  • Rao SM, Batra AK, Cao C, Lal RB (1990) Etch pit study of different crystallographic faces of L-arginine phosphate (LAP). J Cryst Growth 106:481–482

    CAS  Google Scholar 

  • Rashkovich LN, Shekunov BY (1991) Study of the growth mechanism of L-arginine chloride monohydrate (LACh) crystals. J Cryst Growth 112:183–191

    CAS  Google Scholar 

  • Ratajczak H, Pietrashko A, Baran J, Barnes AJ, Tarnavski YU (1994) Structure and polarized IR and Raman spectra of the solid complex of bis(betaine)-sulphuric acid. J Mol Struct 327(2–3):297–312

    CAS  Google Scholar 

  • Ratajczak H, Barycki J, Pietraszko A, Baran J, Debrus S, May M, Venturini J (2000) Preparation and structural study of a novel nonlinear molecular material: the L-histidinium dihydrogenarsenate orthoarsenic acid crystal. J Mol Struct 526:269–278

    CAS  Google Scholar 

  • Rathyalakshmi R, Bhagavannarayana G, Ramasamy P (2009) Growth and characterization of a new NLO material: L-glutamic acid hydro bromide [L-GluHBr]. Mater Res Bull 44:1097–1101

    Google Scholar 

  • Ravi G, Srinivasan K, Anbukumar S, Ramasamy P (1994) Growth and characterization of sulphate mixed L-arginine phosphate and ammonium dihydrogen phosphate/potassium dihydrogen phosphate mixed crystals. J Cryst Growth 137:598–604

    CAS  Google Scholar 

  • Ravikumar B, Sridhar B, Rajaram RK (2001a) DL-Phenylalaninium dihydrogen phosphate. Acta Crystallogr E57:o1078–o1080

    Google Scholar 

  • Ravikumar B, Sridhar B, Rajaram RK (2001b) D-Serinium D-serine nitrate. Acta Crystallogr E57(8):o682–o684

    Google Scholar 

  • Ravikumar B, Sridhar B, Rajaram RK (2002a) L-Phenylalanine L-phenylalaninium dihydrogenphosphate. Acta Crystallogr E58:o123–o125

    Google Scholar 

  • Ravikumar B, Sridhar B, Rajaram RK (2002b) DL-Threonine dihydrogen phosphate. Acta Crystallogr E58:o1185–o1187

    Google Scholar 

  • Ravikumar B, Sridhar B, Rajaram RK (2002c) DL-Valinium dihydrogen phosphate. Acta Crystallogr E58:o879–o881

    Google Scholar 

  • Ravikumar B, Sridhar B, Rajaram RK (2004) L-Ornithinium sulfate monohydrate. Acta Crystallogr E60:o2093–o2095

    Google Scholar 

  • Ravikumar B, Rajaram RK, Ramakrishnan V (2006) Raman and IR spectral studies of L-phenylalanine L-phenylalaninium dihydrogenphosphate. J Raman Spectrosc 37:597–605

    CAS  Google Scholar 

  • Ravishankar R, Nagasuma C, Vijayan M (1998) X-ray studies of crystalline complexes involving amino acids. XXXIV. Novel mode of aggregation, interaction patterns and chiral effects in the maleic acid complexes of DL- and L-arginine. J Biomol Struct Dyn 15(6):1093–1100

    CAS  PubMed  Google Scholar 

  • Rayar SL, Selvarajan P (2010) Structural, mechanical, FTIR, SHG and thermal studies of L-HTFA single crystals grown by solution method. Recent Res Sci Technol 2(10):77–81

    CAS  Google Scholar 

  • Recker R, Wallrafen F, Haussühl S, Krumbe W (1986) Crystal growth and physical properties of L-glutamic acid halides L-C5H9NO4.HX (X=Cl, Br, I). Z Kristallogr 177:125–132

    CAS  Google Scholar 

  • Remédios CMR, Paraguassu W, Lima JA Jr, Freire PTC, Mendes-Filho J, Melo FEA, de Menezes AS, dos Santos AO, Cardoso LP, Miranda MAR (2008) Effect of Ni(II) doping on the structure of L-histidine hydrochloride monohydrate crystals. J Phys Condens Matter 20:275209 (6 p)

    Google Scholar 

  • Renuka N, Vijayan N, Brijesh Rathi, RameshBabu R, Nagarajan K (2012) Synthesis, growth and optical properties of semi organic non linear optical single crystal: L-Arginine acetate. Optik 123:189–192

    CAS  Google Scholar 

  • Rieckhoff KE, Peticolas WL (1965) Optical second-harmonic generation in crystalline amino acids. Science 147(3658):610–611

    CAS  PubMed  Google Scholar 

  • Riscob B, Kushwaha SK, Shakir M, Nagarajan K, Maurya KK, Haranath D, Roy SDD, Bhagavannarayana G (2011a) Crystalline perfection, optical and dielectric studies on L-histidine nitrate: a nonlinear optical material. Physica B 406:4440–4446

    CAS  Google Scholar 

  • Riscob B, Shakir M, Sudar JK, Natarajan S, Wahab MA, Bhagavannarayana G (2011b) Synthesis, growth, crystal structure and characterization of a new organic material: glycine glutaric acid. Spectrochim Acta A 78:543–548

    CAS  Google Scholar 

  • Riscob B, Shakir M, Vijayan N, Maurya KK, Wahab MA, Bhagavannarayana G (2012) Unidirectional crystal growth and crystalline perfection of L-arginine phosphate monohydrate. J Appl Crystallogr 45:679–685

    CAS  Google Scholar 

  • Robert R, Justin Raj C, Krishnan S, Uthrakumar R, Dinakaran S, Jerome Das S (2010) Spectral, optical and mechanical studies on L-histidine hydrochloride (LHC) single crystals grown by unidirectional growth technique. Physica B 405:3248–3252

    CAS  Google Scholar 

  • Robertson G, Dunn MH (1993) Excimer pumped deuterated L-arginine phosphate optical parametric oscillator. Appl Phys Lett 62:3405–3407

    CAS  Google Scholar 

  • Robson W, Selim ASM (1952) The direct isolation of arginine and lysine picrates from gelatin hydrolysates. Biochem J 52:318–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues VH, Paixão JA, Costa MMRR, Matos Beja A (2000) Sarcosinium trifluoroacetate. Acta Crystallogr C56:1053–1055

    CAS  Google Scholar 

  • Rodrigues VH, Paixão JA, Costa MMRR, Matos Beja A (2001a) Conformation of cationic N, N-dimethylglycine in dimethylglycinium trifluoroacetate. Acta Crystallogr C57:417–420

    CAS  Google Scholar 

  • Rodrigues VH, Paixão JA, Costa MMRR, Matos Beja A (2001b) Betainium trifluoroacetate. Acta Crystallogr C57:761–763

    CAS  Google Scholar 

  • Rodrigues VH, Paixão JA, Costa MMRR, Matos Beja A (2001c) Betaine betainium hydrogen oxalate. Acta Crystallogr C57(2):213–215

    CAS  Google Scholar 

  • Rodrigues VH, Paixão JA, Costa MMRR, Matos Beja A (2002) Glycinium trifluoroacetate. Acta Crystallogr C58:o658–o660

    CAS  Google Scholar 

  • Rodrigues VH, Matos Beja A, Paixão JA, Costa MMRR (2006a) Glycinium trichloroacetate. Acta Crystallogr C62:o71–o72

    CAS  Google Scholar 

  • Rodrigues VH, Costa MMRR, De Matos Gomes E, Nogueira E, Belslsey MS (2006b) L-Phenylalanine-4-nitrophenol (1/1). Acta Crystallogr C62:o699–o701

    Google Scholar 

  • Rodrigues VH, Costa MMRR, Dekola T, De Matos Gomes E (2009) Bis[glycinium(0.5+)] perrhenate. Acta Crystallogr E65(1):m19

    Google Scholar 

  • Rodrigues VH, Costa MMRR, Belsley M, De Matos Gomes E (2012) L-tryptophan 4-nitrophenol trisolvate. Acta Crystallogr E68:o920

    Google Scholar 

  • Rolski S, Zdunska A, Popko A (1965) L-Leucine hydrochlorides. Acta Polon Pharm 20:141–145, CA:62:1737d

    Google Scholar 

  • Román P, Gutiérrez-Jorrilla JM, Luque A, Vegas A (1987) The MoO3-histidine-HClO4 system. Synthesis, spectroscopic, and structural study of L-histidinium perchlorate. J Crystallogr Spectrosc Res 17:585–595

    Google Scholar 

  • Roy S, Singh DD, Vijayan M (2005) X -ray studies on crystalline complexes involving amino acids and peptides. XLII. Adipic acid complexes of L- and DL- arginine and supramolecular association in arginine-dicarboxylic acid complexes. Acta Crystallogr B61(1):89–95

    CAS  Google Scholar 

  • Ruby A, Raj SAC (2012) Synthesis, growth, spectroscopic, optical and thermal studies of glycinium maleate single crystals. Adv Appl Sci Res 3:1677–1685

    Google Scholar 

  • Ruby Nirmala L, Prakash JTH (2013) Investigation on the influence of foreign metal ions in crystal growth and characterization of L-Alaninium Maleate (LAM) single crystals. Spectrochim Acta A 115:778–782

    CAS  Google Scholar 

  • Rudert R, Schulz B, Reck G, Vollhardt D, Kriwanek J (2000) N-n-Alkyl N, N-dimethylammonioacetic acid bromides: the first complete series of crystal and molecular structure determinations of an amphiphilic compound with alkyl chain lengths n = 1,…, 16. Acta Crystallogr B56:124–131

    CAS  Google Scholar 

  • Saari AL, Anderson RH (1977) Amino acid derivatives. US Patent 406438

    Google Scholar 

  • Saenger W, Wagner KG (1972) An X-ray study of the hydrogen bonding in the crystalline L-arginine phosphate monohydrate complex. Acta Crystallogr B28:2237–2244

    Google Scholar 

  • Sajan D, Binoy J, Pradeep B, Krishna KV, Kartha VB, Hubert Joe I, Jayakumar VS (2004) NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate. Spectrochim Acta A 60:173–180

    CAS  Google Scholar 

  • Sajan D, Joseph L, Vijayan N, Karabacak M (2011) Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of L-histidinium bromide monohydrate: a density functional theory. Spectrochim Acta A 81:85–98

    CAS  Google Scholar 

  • Salunke DM, Vijayan M (1981) Specific interactions involving guanidyl group observed in crystal structures. Int J Pept Protein Res 18:348–351

    CAS  PubMed  Google Scholar 

  • Salunke DM, Vijayan M (1982) X-ray studies of crystalline complexes involving amino acids and peptides. VII. L-arginine L-aspartate. Acta Crystallogr B38(4):1328–1330

    CAS  Google Scholar 

  • Salunke DM, Vijayan M (1983) X-ray studies on crystalline complexes involving amino acids and peptides. IX. Crystal structure of L-ornithine L-aspartate hemihydrate. Int J Pept Protein Res 22:154–160

    CAS  PubMed  Google Scholar 

  • Salunke DM, Vijayan M (1984) Crystal structure of the amino acid-vitamin complex lysine pantothenate. Biochim Biophys Acta (BBA)-Gen Subjects 798(2):175–179, Preliminary report has been made in: Acta Crystallogr A 37:C65 (1981)

    CAS  Google Scholar 

  • Salvestrini JP, Zaccaro J, Ibanez A, Fontana MD (1998) Investigation of electrooptic modulation from organic-inorganic crystals. J Appl Phys B67:761–763

    Google Scholar 

  • Sangeetha K, Ramesh Babu R, Ramamurthi K, Jai Prakash, Khan SA (2011a) Spectral studies on Ag8+ ions irradiated LAHCl.H2O and LAHBr.H2O single crystals. Spectrochim Acta A 79:884–888

    CAS  Google Scholar 

  • Sangeetha K, Ramesh Babu R, Bhagavannarayana G, Ramamurthi K (2011b) Structural, spectral, optical and dielectric properties of copper and glycine doped LAHCl single crystals. Spectrochim Acta A 79:1017–1023

    CAS  Google Scholar 

  • Sangeetha K, Ramesh Babu R, Bhagavannarayana G, Ramamurthi K (2011c) Unidirectional growth and characterization of L-arginine monohydrochloride monohydrate single crystals. Mater Chem Phys 130:487–492

    CAS