Skip to main content

Proper Orthogonal Decomposition Analysis of Noise Generation Mechanisms in the Slat Cove

  • Conference paper
  • First Online:
Book cover Instability and Control of Massively Separated Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 107))

  • 2073 Accesses

Abstract

Airframe became a relevant source of noise in commercial aircrafts because of the introduction of high by-pass ratio turbofans. The slat is one of the most important airframe noise source, since it represents a source distributed along the wing span. The flow mechanism responsible for noise generation is not completely understood yet. Time-accurate Lattice-Boltzmann simulations were carried out in order to deliver flow data for the calculations of coherent structures in the slat cove by means of the Proper Orthogonal Decomposition (POD) technique. The first two POD-modes are dominated by mixing-layer like structures. Power Spectral Density of the amplitude of these leading POD-functions present the highest level at frequencies that are dominant in the spectrum of far-field acoustic fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. S. Aflalo, L. G. C. Simões, R. G. Silva, and M. A. F. Medeiros. Comparative analysis of turbulence models for slat noise source calculations employing unstructured meshes. AIAA Paper 2010–3838, 2010.

    Google Scholar 

  2. G. A. Brès, F. Pérot, and F. Freed. A Ffowcs Williams-Hawkings solver for Lattice-Boltzmann based computational aeroacoustics. AIAA Paper 2010–3711, 2010.

    Google Scholar 

  3. M. M. Choudhari, M. R. Khorrami, D. P. Lockard, H. L. Atkins, and G. M. Lilley. Slat cove noise modeling: A posteriori analysis of unsteady RANS simulations. AIAA Paper 2002–2468, 2002.

    Google Scholar 

  4. M. M. Choudhari, D. P. Lockard, M. G. Macaraeg, B. A. Singer, C. L. Streett, G. R. Neubert, R. W. Stoker, J. R. Underbrink, M. E. Berkman, M. R. Khorrami, and S. S. Sadowski. Aeroacoustic experiments in the Langley low-turbulence pressure tunnel. Technical Report NASA TM 2002–211432, 2002.

    Google Scholar 

  5. W. Dobrzynski. Almost 40 years of airframe noise research: What did we achieve? Journal of Aircraft, 47(2), 2010.

    Google Scholar 

  6. W. Dobrzynski and M. Pott-Pollenske. Slat noise source studies for farfield noise prediction. AIAA Paper 2001–2158, 2001.

    Google Scholar 

  7. Fares E (2006) Unsteady flow simulation of the Ahmed reference body using a Lattice Boltzmann approach. Computers and Fluids 35:940–950

    Google Scholar 

  8. Holmes P, Lumley J, Berkooz G (1996) Turbulence, Coherent Structures. Cambridge University Press, Dynamical Systems and Symmetry

    MATH  Google Scholar 

  9. T. Imamura, H. Ura, Y. Yokokawa, and K. Yamamoto. A far-field noise and near-field unsteadiness of a simplified high-lift-configuration model (Slat). AIAA Paper 2009–1239, 2009.

    Google Scholar 

  10. L. N. Jenkins, M. R. Khorrami, and M. M. Choudhari. Characterization of unsteady flow structures near leading-edge slat: Part I. PIV measurements. AIAA Paper 2004–2801, 2004.

    Google Scholar 

  11. M. R. Khorrami, M. M. Choudhari, and L. N. Jenkins. Characterization of unsteady flow structures near leading-edge slat: Part II. 2D computations. AIAA Paper 2004–2802, 2004.

    Google Scholar 

  12. Khorrami MR, Singer BA, Berkman ME (2002) Time-accurate simulations and acoustic analysis of slat free-shear-layer. AIAA Journal 40(7):1284–1291

    Article  Google Scholar 

  13. A. Kolb, P. Faulhaber, R. Drobietz, and M. Grünewald. Aeroacoustic wind tunnel measurements on a 2D high-lift configuration. AIAA Paper 2007–3447, 2007.

    Google Scholar 

  14. D. P. Lockard and M. M. Choudhari. Noise radiation from a leading-edge slat. AIAA Paper 2009–3101, 2009.

    Google Scholar 

  15. D. P. Lockard and M. M. Choudhari. The effect of cross flow on slat noise. AIAA Paper 2010–3835, 2010.

    Google Scholar 

  16. D. P. Lockard and M. M. Choudhari. The influence of realistic Reynolds numbers on slat noise simulations. AIAA Paper 2012–2101, 2012.

    Google Scholar 

  17. M. Pott-Pollenske, J. Delfs, and J. Reichenberger. A testbed for large scale and high Reynolds number airframe noise research. AIAA Paper 2013–2260, 2013.

    Google Scholar 

  18. L. G. C. Simões, D. S. Souza, and M. A. F. Medeiros. On the small effect of boundary layer thicknesses on slat noise. AIAA Paper 2011–2906, 2011.

    Google Scholar 

  19. L. Sirovich. Chaotic dynamics of coherent structures. Parts I-III. Quarterly Applied Math., XLV(3), 1987.

    Google Scholar 

  20. D. S. Souza, D. Rodríguez, and M. A. F. Medeiros. Effect of an excrescence in the slat cove: Flow-field, acoustic radiation and coherent structures. Aerospace Science and Technology, 2013.

    Google Scholar 

  21. D. S. Souza, D. Rodríguez, and M. A. F. Medeiros. A study of the sources of slat noise using proper orthogonal decomposition. AIAA Paper 2013–2163, 2013.

    Google Scholar 

  22. M. Wei and J. B. Freund. A noise-controlled free shear flow. Journal Fluid Mechanics, 546, 2006.

    Google Scholar 

Download references

Acknowledgments

D. S. Souza acknowledges funding from CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. M. A. F. Medeiros acknowledges support from CNPq/Brasil—Conselho Nacional de Desenvolvimento Científico e Tecnológico. Support of the Marie Curie Grant PIRSES-GA-2009-247651 “FP7-PEOPLE-IRSES: ICOMASEF, Instability and Control of Massively Separated Flows” is gratefully acknowledged. D. Rodríguez acknowledges funding from the Marie Curie-COFUND UNITE programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Souza, D.S., Rodríguez, D., de Medeiros, M.A.F. (2015). Proper Orthogonal Decomposition Analysis of Noise Generation Mechanisms in the Slat Cove. In: Theofilis, V., Soria, J. (eds) Instability and Control of Massively Separated Flows. Fluid Mechanics and Its Applications, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-06260-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06260-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06259-4

  • Online ISBN: 978-3-319-06260-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics