Report: The Process Model Matching Contest 2013

  • Ugur Cayoglu
  • Remco Dijkman
  • Marlon Dumas
  • Peter Fettke
  • Luciano García-Bañuelos
  • Philip Hake
  • Christopher Klinkmüller
  • Henrik Leopold
  • André Ludwig
  • Peter Loos
  • Jan Mendling
  • Andreas Oberweis
  • Andreas Schoknecht
  • Eitam Sheetrit
  • Tom Thaler
  • Meike Ullrich
  • Ingo Weber
  • Matthias Weidlich
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 171)

Abstract

Process model matching refers to the creation of correspondences between activities of process models. Applications of process model matching are manifold, reaching from model validation over harmonization of process variants to effective management of process model collections. Recently, this demand led to the development of different techniques for process model matching. Yet, these techniques are heuristics and, thus, their results are inherently uncertain and need to be evaluated on a common basis. Currently, however, the BPM community lacks established data sets and frameworks for evaluation. The Process Model Matching Contest 2013 aimed at addressing the need for effective evaluation by defining process model matching problems over published data sets.

This paper summarizes the setup and the results of the contest. Besides a description of the contest matching problems, the paper comprises short descriptions of all matching techniques that have been submitted for participation. In addition, we present and discuss the evaluation results and outline directions for future work in this field of research

Keywords

Process matching Model alignment Contest Matching evaluation 

References

  1. 1.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer, Berlin (2012)Google Scholar
  2. 2.
    Castelo Branco, M., Troya, J., Czarnecki, K., Küster, J., Völzer, H.: Matching business process workflows across abstraction levels. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 626–641. Springer, Heidelberg (2012) Google Scholar
  3. 3.
    Küster, J.M., Koehler, J., Ryndina, K.: Improving business process models with reference models in business-driven development. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 35–44. Springer, Heidelberg (2006) Google Scholar
  4. 4.
    Weidlich, M., Mendling, J., Weske, M.: A foundational approach for managing process variability. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 267–282. Springer, Heidelberg (2011) Google Scholar
  5. 5.
    La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: An approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. 22(2), 11:1–11:42 (2013)Google Scholar
  6. 6.
    Dumas, M., García-Bañuelos, L., Dijkman, R.M.: Similarity search of business process models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)Google Scholar
  7. 7.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011) Google Scholar
  8. 8.
    Jin, T., Wang, J., Rosa, M.L., ter Hofstede, A.H., Wen, L.: Efficient querying of large process model repositories. Comput. Ind. 64(1), 41–49 (2013)CrossRefGoogle Scholar
  9. 9.
    Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M., ter Hofstede, A.H.M.: Approximate clone detection in repositories of business process models. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 302–318. Springer, Heidelberg (2012) Google Scholar
  10. 10.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (DE) (2007)MATHGoogle Scholar
  11. 11.
    Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping. Springer, Heidelberg (2011)MATHGoogle Scholar
  12. 12.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd annual meeting on Association for Computational Linguistics, ACL ’94, pp. 133–138, Stroudsburg, PA, USA. Association for Computational Linguistics (1994)Google Scholar
  13. 13.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Roddick, J.F., Hinze, A. (eds.) Proceedings of the 4th Asia-Pacific Conference on Conceptual Modelling. Australian Computer Science Communications, vol. 67, pp. 71–80 (2007)Google Scholar
  14. 14.
    Miller, G., Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)Google Scholar
  15. 15.
    Bunke, H.: On a relation between graph edit distance and maximum common subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of business process models: metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)CrossRefGoogle Scholar
  17. 17.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009) Google Scholar
  18. 18.
    Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010) Google Scholar
  19. 19.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  20. 20.
    Porter, M.F.: Readings in Information Retrieval. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  21. 21.
    Miller, G.A.: WordNet: a Lexical database for english. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  22. 22.
    Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013) Google Scholar
  23. 23.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  24. 24.
    Lin, D.: An information-theoretic definition of similarity. In. In Proceedings of the 15th International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann (1998)Google Scholar
  25. 25.
    Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process models. Inf. Syst. 37(5), 443–459 (2012)CrossRefGoogle Scholar
  26. 26.
    Sakr, S., Awad, A., Kunze, M.: Querying process models repositories by aggregated graph search. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 573–585. Springer, Heidelberg (2013) Google Scholar
  27. 27.
    Awad, A.: BPMN-Q: A language to query business processes. In: Reichert, M., Strecker, S., Turowski, K. (eds.) EMISA. LNI, vol. P-119, pp. 115–128 St. Goar, Germany, GI (2007)Google Scholar
  28. 28.
    Weidlich, M., Sheetrit, E., Branco, M., Gal, A.: Matching business process models using positional passage-based language models. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 130–137. Springer, Heidelberg (2013)Google Scholar
  29. 29.
    Lv, Y., Zhai, C.: Positional language models for information retrieval. In: Allan, J., Aslam, J.A., Sanderson, M., Zhai, C., Zobel, J. (eds.) SIGIR, pp. 299–306. ACM, New York (2009)CrossRefGoogle Scholar
  30. 30.
    Lin, J.: Divergence measures based on the shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)CrossRefMATHGoogle Scholar
  31. 31.
    Gal, A., Sagi, T.: Tuning the ensemble selection process of schema matchers. Inf. Syst. 35(8), 845–859 (2010)CrossRefGoogle Scholar
  32. 32.
    Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010) Google Scholar
  33. 33.
    Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for ontology matching. In: Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW, pp. 23–31. ACM, New York (2006)Google Scholar
  34. 34.
    Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429 (2011)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Polyvyanyy, A., Weidlich, M.: Towards a compendium of process technologies - the jbpt library for process model analysis. In: Deneckère, R., Proper, H.A. (eds.) CAiSE Forum. CEUR Workshop Proceedings, vol. 998, pp. 106–113. www.CEUR-WS.org (2013)
  36. 36.
    Sagi, T., Gal, A.: Schema matching prediction with applications to data source discovery and dynamic ensembling. VLDB J. 22(5), 689–710 (2013)CrossRefGoogle Scholar
  37. 37.
    Belhajjame, K., Paton, N.W., Fernandes, A.A.A., Hedeler, C., Embury, S.M.: User feedback as a first class citizen in information integration systems. In: CIDR, pp. 175–183. www.cidrdb.org (2011)
  38. 38.
    Quoc Viet Nguyen, H., Wijaya, T.K., Miklós, Z., Aberer, K., Levy, E., Shafran, V., Gal, A., Weidlich, M.: Minimizing human effort in reconciling match networks. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 212–226. Springer, Heidelberg (2013)Google Scholar
  39. 39.
    Sagi, T., Gal, A.: Non-binary evaluation for schema matching. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 477–486. Springer, Heidelberg (2012) Google Scholar
  40. 40.
    Duchateau, F., Bellahsene, Z., Coletta, R.: Matching and alignment: what is the cost of user post-match effort? In: Meersman, R., et al. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 421–428. Springer, Heidelberg (2011) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ugur Cayoglu
    • 1
  • Remco Dijkman
    • 2
  • Marlon Dumas
    • 3
  • Peter Fettke
    • 4
    • 5
  • Luciano García-Bañuelos
    • 3
  • Philip Hake
    • 4
    • 5
  • Christopher Klinkmüller
    • 6
  • Henrik Leopold
    • 7
  • André Ludwig
    • 6
  • Peter Loos
    • 4
    • 5
  • Jan Mendling
    • 8
  • Andreas Oberweis
    • 1
  • Andreas Schoknecht
    • 1
  • Eitam Sheetrit
    • 9
  • Tom Thaler
    • 4
    • 5
  • Meike Ullrich
    • 1
  • Ingo Weber
    • 10
    • 11
  • Matthias Weidlich
    • 9
  1. 1.Institute of AppliedInformatics and Formal Description Methods (AIFB)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.University of TartuTartuEstonia
  4. 4.Institute for Information Systems (IWi)DFKISaarbrückenGermany
  5. 5.Saarland UniversitySaarbrückenGermany
  6. 6.Information Systems InstituteUniversity of LeipzigLeipzigGermany
  7. 7.Humboldt-Universität zu BerlinArcataGermany
  8. 8.Wirtschaftsuniversität WienViennaAustria
  9. 9.Technion - Israel Institute of TechnologyHaifaIsrael
  10. 10.Software Systems Research Group, NICTASydneyAustralia
  11. 11.School of Computer Science & EngineeringUniversity of New South WalesKensingtonAustralia

Personalised recommendations