Skip to main content

Kleene Algebra with Converse

  • Conference paper
Relational and Algebraic Methods in Computer Science (RAMICS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8428))

Abstract

The equational theory generated by all algebras of binary relations with operations of union, composition, converse and reflexive transitive closure was studied by Bernátsky, Bloom, Ésik, and Stefanescu in 1995. We reformulate some of their proofs in syntactic and elementary terms, and we provide a new algorithm to decide the corresponding theory. This algorithm is both simpler and more efficient; it relies on an alternative automata construction, that allows us to prove that the considered equational theory lies in the complexity class PSpace.

Specific regular languages appear at various places in the proofs. Those proofs were made tractable by considering appropriate automata recognising those languages, and exploiting symmetries in those automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloom, S.L., Ésik, Z., Stefanescu, G.: Notes on equational theories of relations. Algebra Universalis 33, 98–126 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boffa, M.: Une remarque sur les systèmes complets d’identités rationnelles. Informatique Théorique et Applications 24, 419–428 (1990)

    MATH  MathSciNet  Google Scholar 

  3. Boffa, M.: Une condition impliquant toutes les identités rationnelles. Informatique Théorique et Applications 29, 515–518 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Brunet, P., Pous, D.: Extended version of this abstract, with omitted proofs. Technical report, LIP - CNRS, ENS Lyon (2014), http://hal.archives-ouvertes.fr/hal-00938235

  5. Conway, J.H.: Regular algebra and finite machines. Chapman and Hall Mathematics Series (1971)

    Google Scholar 

  6. Ésik, Z., Bernátsky, L.: Equational properties of Kleene algebras of relations with conversion. Theoretical Computer Science 137, 237–251 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys 16, 1 (1961)

    Article  Google Scholar 

  8. Kleene, S.C.: Representation of Events in Nerve Nets and Finite Automata. Memorandum. Rand Corporation (1951)

    Google Scholar 

  9. Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. In: LICS, pp. 214–225. IEEE Computer Society (1991)

    Google Scholar 

  10. Krob, D.: A Complete System of B-Rational Identities. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 60–73. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  11. Meyer, A., Stockmeyer, L.J.: Word problems requiring exponential time. In: Proc. ACM Symposium on Theory of Computing, pp. 1–9. ACM (1973)

    Google Scholar 

  12. Milner, R.: Communication and Concurrency. Prentice Hall (1989)

    Google Scholar 

  13. Redko, V.N.: On defining relations for the algebra of regular events. In: Ukrainskii Matematicheskii Zhurnal, pp. 120–126 (1964)

    Google Scholar 

  14. Salomaa, A.: Two Complete Axiom Systems for the Algebra of Regular Events. J. ACM 13, 158–169 (1966)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Brunet, P., Pous, D. (2014). Kleene Algebra with Converse. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2014. Lecture Notes in Computer Science, vol 8428. Springer, Cham. https://doi.org/10.1007/978-3-319-06251-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06251-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06250-1

  • Online ISBN: 978-3-319-06251-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics