Advertisement

Type-2 Fuzzy Controllers in Arrow Categories

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8428)

Abstract

Arrow categories as a suitable categorical and algebraic description of \({\mathcal L}\)-fuzzy relations have been used to specify and describe fuzzy controllers in an abstract manner. The theory of arrow categories has also been extended to include higher-order fuzziness. In this paper we use this theory in order to develop an appropriate description of type-2 fuzzy controllers. An overview of the relational representation of a type-1 fuzzy controller is given before discussing the extension to a type-2 controller. We discuss how to model type reduction, an essential component of any type-2 controller. In addition, we provide a number of examples of general type reducers.

Keywords

Rule Base Fuzzy Controller Membership Degree Decision Module Type Reducer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkhoff, G.: Lattice Theory, 3rd edn., vol. XXV. American Mathematical Society Colloquium Publications (1940)Google Scholar
  2. 2.
    Castillo, O., Melin, P.: Type-2 Fuzzy Logic: Theory and Applications. STUDFUZZ, vol. 223. Springer (2008)Google Scholar
  3. 3.
    De Cock, M., Radzikowska, A.M., Kerre, E.E.: Modelling Linguistic Modifiers Using Fuzzy-Rough Structures. In: Proceedings of IPMU 2000, vol. III, pp. 1735–1742 (2000)Google Scholar
  4. 4.
    Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland (1990)Google Scholar
  5. 5.
    Furusawa, H., Kawahara, Y., Winter, M.: Dedekind Categories with Cutoff Operators. Fuzzy Sets and Systems 173, 1–24 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–157 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gottwald, S.: Fuzzy Sets and Fuzzy Logic. Foundations of Application – from a Mathematical Point of View. Vieweg (1993)Google Scholar
  8. 8.
    Jónsson, B., Tarski, A.: Boolean algebras with operators, I, II. Amer. J. Math. 73, 74, 891–939, 127-162 (1951, 1952)Google Scholar
  9. 9.
    Kawahara, Y., Furusawa, H.: Crispness and Representation Theorems in Dedekind Categories. DOI-TR 143. Kyushu University (1997)Google Scholar
  10. 10.
    Mamdani, E.H., Gaines, B.R.: Fuzzy Reasoning and its Application. Academic Press, London (1987)Google Scholar
  11. 11.
    Olivier, J.P., Serrato, D.: Catégories de Dedekind. Morphismes dans les Catégories de Schröder. C.R. Acad. Sci. Paris 290, 939–941 (1980)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Olivier, J.P., Serrato, D.: Squares and Rectangles in Relational Categories - Three Cases: Semilattice, Distributive lattice and Boolean Non-unitary. Fuzzy Sets and Systems 72, 167–178 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Schmidt, G., Berghammer, R.: Relational measures and integration in preference modeling. JLAP 76, 112–129 (2008)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous Relation Algebras. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science. Springer, Vienna (1997)Google Scholar
  15. 15.
    Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer (1989); English version: Relations and Graphs. Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoret. Comput. Sci., Springer (1993) Google Scholar
  16. 16.
    Schmidt, G.: Relational Measures and Integration. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 343–357. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Schmidt, G.: Relational Mathematics. Encyplopedia of Mathematics and its Applications 132 (2011)Google Scholar
  18. 18.
    Winter, M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf Nichtdetermismus in Programmiersprachen. Dissertationsverlag NG Kopierladen GmbH, München (1998)Google Scholar
  19. 19.
    Winter, M.: A new Algebraic Approach to L-Fuzzy Relations Convenient to Study Crispness. INS Information Science 139, 233–252 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Winter, M.: Relational Constructions in Goguen Categories. In: de Swart, H. (ed.) Participants Proceedings of the 6th International Seminar on Relational Methods in Computer Science (RelMiCS), pp. 222–236. Katholieke Universiteit Brabant, Tilburg (2001)Google Scholar
  21. 21.
    Winter, M.: Derived Operations in Goguen Categories. TAC Theory and Applications of Categories 10(11), 220–247 (2002)zbMATHGoogle Scholar
  22. 22.
    Winter, M.: Representation Theory of Goguen Categories. Fuzzy Sets and Systems 138, 85–126 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Winter, M.: Goguen Categories - A Categorical Approach to L-fuzzy relations. Trends in Logic 25 (2007)Google Scholar
  24. 24.
    Winter, M.: Arrow Categories. Fuzzy Sets and Systems 160, 2893–2909 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Winter, M.: Membership Values in Arrow Categories. Submitted to Fuzzy Sets and Systems (October 2013)Google Scholar
  26. 26.
    Winter, M.: Higher-order arrow categories. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMiCS 2014. LNCS, vol. 8428, pp. 277–292. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning - I. Information Sciences 8, 199–249 (1975)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceBrock UniversitySt. CatharinesCanada
  2. 2.Kojima LaboratoryKobe UniversityKobeJapan

Personalised recommendations