Skip to main content

The Differential Semantics of Łukasiewicz Syntactic Consequence

  • Chapter
  • First Online:

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 6))

Abstract

The classical condition “c is a semantic consequence of a set P of premises” in infinite-valued propositional Łukasiewicz logic Ł\(_{\infty }\) is refined using enriched valuations that take into account the effect on the formula c of the stability of the truth-value of each formula p in P under small perturbations (or, measurement errors) of the models of P. The differential properties of the functions represented by c and by all p in P naturally lead to a new notion of semantic consequence that turns out to coincide with syntactic consequence.

Dedicated to Petr Hájek

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguzzoli, S., & Bova, S. (2010). The free \(n\)-generated BL-algebra. Annals of Pure and Applied Logic, 161, 1144–1170.

    Google Scholar 

  • Baaz, M., Hájek, P., Montagna, F., & Veith, H. (2002). Complexity of t-tautologies. Annals of Pure and Applied Logic, 113, 3–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Bouligand, H. (1930). Sur les surfaces dépourvues de points hyperlimites. Annales de la Société Polonaise de Mathématique, 9, 32–41.

    Google Scholar 

  • Bot, R. I., Grad, S. M., & Wanka, G. (2009). Duality in vector optimization. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Busaniche, M., & Mundici, D. (2007). Geometry of Robinson consistency in Łukasiewicz logic. Annals of Pure and Applied Logic, 147, 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Busaniche, M., & Mundici, D. (2014). Bouligand-Severi tangents in MV-algebras. Revista Matemática Iberoamericana, 30(1), 191–201.

    Article  MathSciNet  MATH  Google Scholar 

  • Cignoli, R., D’Ottaviano, I. M. L., & Mundici, D. (2000). Algebraic foundations of many-valued reasoning, Trends in Logic (Vol. 7). Dordrecht: Kluwer.

    Book  Google Scholar 

  • Cignoli, R., Esteva, F., Godo, L., & Torrens, A. (2000). Basic logic is the logic of continuous t-norms and their residua. Soft Computing, 4, 106–112.

    Article  Google Scholar 

  • Cohn, P. M. (1980). Universal algebra. Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Dubuc, E., & Poveda, Y. (2010). Representation theory of MV-algebras. Annals of Pure and Applied Logic, 161, 1024–1046.

    Article  MathSciNet  MATH  Google Scholar 

  • Hájek, P. (1998). Metamathematics of fuzzy logic, Trends in Logic (Vol. 4). Dordrecht: Kluwer.

    Book  Google Scholar 

  • Hájek, P. (1998). Basic fuzzy logic and BL-algebras. Soft Computing, 2, 124–128.

    Article  Google Scholar 

  • Hay, L. S. (1963). Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic, 28, 77–86.

    Google Scholar 

  • Montagna, F. (2007). Notes on the strong completeness in product and BL logics and their first-order extensions. Lecture Notes in Artificial Intelligence, 4460, 247–274.

    Google Scholar 

  • Mundici, D. (1987). Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science, 52, 145–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Mundici, D. (2011). Advanced Łukasiewicz calculus and MV-algebras, Trends in Logic (Vol. 35). Berlin: Springer.

    Book  Google Scholar 

  • Severi, F. (1927). Conferenze di geometria algebrica (Collected by B. Segre), Stabilimento tipo-litografico del Genio Civile, Roma, 1927, and Zanichelli, Bologna, 1927–1930.

    Google Scholar 

  • Severi, F. (1931). Su alcune questioni di topologia infinitesimale. Annales de la Société Polonaise de Mathématique, 9, 97–108.

    Google Scholar 

  • Tarski, A. (1956). On the concept of logical consequence, Chapter XVI. In A. Tarski (Ed.) Logic, semantics, metamathematics. Oxford: Clarendon Press (Reprinted: Hackett, Indianapolis, 1983).

    Google Scholar 

  • Wójcicki, R. (1977). On matrix representations of consequence operations of Łukasiewicz sentential calculi, Zeitschrift fur math. Logik und Grundlagen der Mathematik 19(1973), 239–247 (Reprinted in Wójcicki, R., & Malinowski, G., (Eds.) Selected papers on Łukasiewicz Sentential Calculi. Ossolineum, Wrocław, 1977, pp. 101–111).

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Manuela Busaniche and two anonymous referees for their valuable criticism and suggestions. The author’s major debt of gratitude is due to Petr Hájek for his outstanding scientific work, his inspiring example, and his friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Mundici .

Editor information

Editors and Affiliations

7.7 Appendix: Stable Consequence for Arbitrary Sets of Sentences

7.7 Appendix: Stable Consequence for Arbitrary Sets of Sentences

Up to isomorphism, MV-algebras are the Lindenbaum algebras of sets of formulas on unlimited supplies of variables. So let \(\fancyscript{X}=\{X_1,X_2,\dots ,X_\alpha ,\ldots \mid \alpha <\kappa \}\) be a set of variables of infinite, possibly uncountable cardinality \(\kappa \), indexed by all ordinals \(0\le \alpha <\kappa .\) Letting \(\mathsf {FORM}_\fancyscript{X}\) be the set of formulas \(\psi (X_{\alpha _1},\dots ,X_{\alpha _t})\) whose variables are contained in \(\fancyscript{X}\), in 7.7.5 below we will routinely extend Definition 7.3.7 to arbitrary subsets \(\Theta \) of \( \mathsf {FORM}_\fancyscript{X}\) and formulas \(\psi \in \mathsf {FORM}_\fancyscript{X}\).

Throughout, we will tacitly identify the valuation space \([0, 1]^\fancyscript{X}\) with the Tychonov cube \([0, 1]^\kappa \) equipped with the product topology.

7.7.1 The free MV-algebra over  \(\kappa \) free generators is the MV-algebra \({{\mathrm{\fancyscript{M}}}}([0, 1]^\kappa )\) of all functions on \([0, 1]^\kappa \)  obtainable from the coordinate functions  \(\pi _\beta (x)=x_\beta ,\,\,\,(x\in [0, 1]^\kappa ,\,\,\, 0\le \beta <\kappa )\) by pointwise application of the operations \(\lnot \) and \(\oplus \), (Cignoli et al. (2000), Theorem 9.1.5).

7.7.2 For any finite set \(\fancyscript{K}=\{X_{\alpha _1},\dots , X_{\alpha _d}\} \subseteq \fancyscript{X}\) we further identify \([0, 1]^{\fancyscript{K}}\) with the set of all \(x\in [0, 1]^\fancyscript{X}\) such that every coordinate \(x_\beta \) of \(x\) vanishes, with the possible exception of \(\beta \in \{\alpha _1,\dots ,\alpha _d\}.\) If \(\,\,\emptyset \not = \fancyscript{H} \subseteq \fancyscript{K} \subseteq \fancyscript{X},\,\,\) the MV-algebra \({{\mathrm{\fancyscript{M}}}}([0, 1]^\fancyscript{H})\) is canonically identified with an MV-subalgebra of \({{\mathrm{\fancyscript{M}}}}([0, 1]^\fancyscript{K})\) via cylindrification.

7.7.3 Suppose we are given two finite subsets \(\fancyscript{H} \subseteq \fancyscript{K}\) of \( \fancyscript{X}\) and two differential valuations \(U=(u_0,u_1,\dots ,u_d)\) in \(\mathbb R^{\fancyscript{H}}\) and \(V=(v_0,v_1,\dots ,v_e)\in \mathbb R^{\fancyscript{K}}\). We then have two prime ideals \(\mathfrak p_U\) of \({{\mathrm{\fancyscript{M}}}}([0, 1]^\fancyscript{H})\) and \(\mathfrak p_V\) of \({{\mathrm{\fancyscript{M}}}}([0, 1]^\fancyscript{K})\supseteq {{\mathrm{\fancyscript{M}}}}([0, 1]^\fancyscript{H}).\) We say that \(V\) dominates \(U\), in symbols, \(V\succeq U,\) if \(\mathfrak p_U=\mathfrak p_V\cap {{\mathrm{\fancyscript{M}}}}([0, 1]^\fancyscript{H})\). When this is the case, the coordinates of \(v_0\) corresponding to the variables of \(\fancyscript{H}\) agree with those of \(u_0.\) Further information on the relationship between \(U\) and \(V\) can be found in (Busaniche and Mundici (2007), Sect. 4).

The following definitions extend 7.3.3, 7.3.6 and 7.3.7 to any set \(\fancyscript{X}\) of variables of infinite cardinality \(\kappa \):

7.7.4 By a differential valuation in \(\mathbb R^\kappa \) we understand a \(\succeq \) -direct system

$$ W=\{U_\fancyscript{H}\mid \fancyscript{H}\subseteq \fancyscript{X}, \,\,\fancyscript{H} \, \mathrm{finite}\} $$

of differential valuations \(U_\fancyscript{H}\) in \(\mathbb R^\fancyscript{H}\), in the sense that for any finite \(\fancyscript{I}, \fancyscript{J}\subseteq \fancyscript{X},\,\,\,\) \(U_{\fancyscript{I}\cup \fancyscript{J}}\) dominates both \(U_{\fancyscript{I}}\) and \(U_{\fancyscript{J}}.\) We say that \(W\) satisfies a formula \(\varphi \in \mathsf {FORM}_\fancyscript{X}\) if \(U_{{{\mathrm{\mathrm var}}}(\varphi )}\) satisfies \(\varphi \) in the sense of 7.3.6, i.e., \(1-\hat{\varphi }\) belongs to the prime ideal \(\mathfrak p_{U_{{{\mathrm{\mathrm var}}}(\varphi )}}\). (As usual, \({{\mathrm{\mathrm var}}}(\varphi )\) denotes the set of variables occurring in \(\varphi \).)

7.7.5 For \(\Theta \subseteq \mathsf {FORM}_\fancyscript{X}\) and \(\psi \in \mathsf {FORM}_\fancyscript{X}\) we say that \(\psi \) is a stable consequence of \(\Theta \) and we write \(\Theta \models _\partial \psi ,\) if \(\psi \) is satisfied by every differential valuation \(W\) in \(\mathbb R^{\kappa }\) that satisfies each \(\theta \in \Theta \).

The “strong completeness” result 7.3.9 is now extended to arbitrary sets of variables:

7.7.6 Let \(\fancyscript{X}\not =\emptyset \) be an arbitrary (finite or infinite) set of variables, \(\Theta \subseteq \mathsf {FORM}_\fancyscript{X}\), and \(\psi \in \mathsf {FORM}_\fancyscript{X}.\) Then  \(\Theta \models _\partial \psi \,\) iff \(\,\Theta \vdash \psi \).

Proof

In the light of 7.3.9 we have only to consider the case when \(\fancyscript{X}\) has infinite cardinality \(\kappa \).

By construction, every differential valuation \(W=\{U_\fancyscript{I} \mid \fancyscript{I}\subseteq \fancyscript{X}, \,\,\fancyscript{I} \, \text {finite}\}\) determines the prime ideal

$$\begin{aligned} \mathfrak p_W=\bigcup \left\{ \mathfrak p_{U_\fancyscript{I}} \mid \fancyscript{I}\subseteq \fancyscript{X}, \,\,\fancyscript{I} \, \text {finite}\right\} . \end{aligned}$$
(7.5)

Conversely, suppose \(\mathfrak p\) is a prime ideal of \({{\mathrm{\fancyscript{M}}}}([0, 1]^{\kappa }) ={{\mathrm{\fancyscript{M}}}}([0, 1]^{\fancyscript{X}})\). Then

$$ \mathfrak p = \bigcup \left\{ \mathfrak p\cap {{\mathrm{\fancyscript{M}}}}([0, 1]^{\fancyscript{H}}) \mid \fancyscript{H} \, \text {a finite subset of} \, \fancyscript{X}\right\} . $$

By 7.3.4 (iv), for any finite subset \(\fancyscript{H}\) of \(\fancyscript{X}\) there is a differential valuation \(U_\fancyscript{H}\) in \(\mathbb R^\fancyscript{H}\) such that \(\mathfrak p\cap {{\mathrm{\fancyscript{M}}}}([0, 1]^{\fancyscript{H}})= \mathfrak p_{U_\fancyscript{H}}\). For any two finite subsets \(\fancyscript{I}, \fancyscript{J}\) of \(\fancyscript{X}\) we have

$$ \mathfrak p_{U_{\fancyscript{I}\cup \fancyscript{J}}} \cap {{\mathrm{\fancyscript{M}}}}([0, 1]^\fancyscript{I}) = \mathfrak p_{U_\fancyscript{I}} \,\,\text { and }\,\, \mathfrak p_{U_{\fancyscript{I}\cup \fancyscript{J}}} \cap {{\mathrm{\fancyscript{M}}}}([0, 1]^\fancyscript{J}) = \mathfrak p_{U_\fancyscript{J}}. $$

We then obtain a differential valuation \(W_\mathfrak p=\{U_\fancyscript{H}\mid \fancyscript{H}\subseteq \fancyscript{X}, \,\,\fancyscript{H} \, \text {finite}\}\) such that \( \mathfrak p = \mathfrak p_{W_\mathfrak p} \) (notation of 7.5).

Having thus shown that the map \(W\mapsto \mathfrak p_W\) sends the set of differential valuations in \(\mathbb R^\kappa \) onto the set of prime ideals of \({{\mathrm{\fancyscript{M}}}}([0, 1]^{\kappa })\), we get the desired result arguing as in the proof of 7.3.9. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mundici, D. (2015). The Differential Semantics of Łukasiewicz Syntactic Consequence. In: Montagna, F. (eds) Petr Hájek on Mathematical Fuzzy Logic. Outstanding Contributions to Logic, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-06233-4_7

Download citation

Publish with us

Policies and ethics