Skip to main content

Calibration Based on Theoretical Intensities and Spectral Sensitivity (Method I)

  • Chapter
  • First Online:
  • 801 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the previous chapter the calibration strategy based on theoretical intensities and spectral sensitivity was introduced. Two main tasks have to be undertaken in order to achieve a reliable calibration. These two tasks will now be motivated individually.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As an example: \(\theta _\mathrm{{min}}\) and \(\theta _\mathrm{{max}}\) are functions of the variables \(z\) and \(\varphi \).

  2. 2.

    Note that the same results can be obtained by using Mueller calculus (see e.g. Toro Inesta [24] or Collett [25]).

  3. 3.

    The limiting case \(\rho _\mathrm{{SP0SA}}=0\) is obtained for \(b^{(2)}\gamma ^2=0\) in Eq. 5.10 while \(\rho _\mathrm{{SP0SA}}=3/4\) results from \(a^2=0\).

  4. 4.

    The complete analysis is implemented in C++ using ROOT functions. The program is made available under http://depoltools.sourceforge.net.

  5. 5.

    Note that nitrogen was used in investigations like the described one, since it is easily available as Raman sample from ambient air.

  6. 6.

    The full tabulation of all data sets measured at the TLK and Swansea is found in Appendix G.

  7. 7.

    Note that in this case the “normal distribution” is not normalized to an area equal to \(1\).

  8. 8.

    Holzer et al. also measured \(\mathrm{{D}}_{2}\).

  9. 9.

    The derivation is given in detail in Appendix F.

  10. 10.

    To give an example, the MonLARA system was then also equipped with a sheet polarizer in the light collection system, which is necessary in order to choose the correct polarization composition of the scattered light in the intensity calculations.

  11. 11.

    NIST = American National Institute of Standards and Technology.

  12. 12.

    In the case of unpolarized emission, no modulation would be expected, while in the case of fully polarized emission, a modulation of \(100\) % of the amplitude would be assumed.

References

  1. Schwartz C, Le Roy RJ (1987) Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen. J Mol Spectrosc 121:420–439

    Article  ADS  Google Scholar 

  2. Schlösser M, James TM, Fischer S, Lewis RJ, Bornschein B, Telle HH (2013) Evaluation method for raman depolarization measurements including geometrical effects and polarization aberrations. J Raman Spectrosc 44(3):453–462

    Article  ADS  Google Scholar 

  3. James TM, Schlösser M, Fischer S, Sturm M, Bornschein B, Lewis RJ, Telle HH (2013) Accurate depolarization ratio measurements for all diatomic hydrogen isotopologues. J Raman Spectrosc 44(6):857–865. doi:10.1002/jrs.4283

    Google Scholar 

  4. James TM (2013) Quantitative Raman spectroscopy of gases related to KATRIN. Ph.D. thesis, Swansea University

    Google Scholar 

  5. Rupp S (2012) Proof of concept of a calibration method for the laser Raman system for KATRIN based on the determination of the system’s spectral sensitivity. Diploma thesis, Karlsruhe Institute of Technology

    Google Scholar 

  6. Long DA (2002) The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Wiley, Chichester

    Book  Google Scholar 

  7. Veirs DK, Rosenblatt GM (1987) Raman line positions in molecular hydrogen: H\(_{2}\), HD, HT, D\(_{2}\), DT, and T\(_{2}\). J Mol Spectrosc 121:401–419

    Google Scholar 

  8. LeRoy RJ (2011) Recalculation of Raman transition matrix elements of all hydrogen isotopologues for 532 nm laser excitation. Private communication

    Google Scholar 

  9. Allemand CD (1970) Depolarization ratio measurements in raman spectrometry. Appl Spectrosc 24(3):348–353

    Article  ADS  Google Scholar 

  10. Bridge NJ, Buckingham AD (1966) The polarization of laser light scattered by gsases. Proc Royal Soc A 295(1442):334–349

    Article  ADS  Google Scholar 

  11. Ziegler LD, Chung YC, Wang P, Zhang YP (1989) Depolarization ratios of resonance Raman scattering in the gas phase. J. Chem. Phys. 90(8):4125–4143

    Google Scholar 

  12. Dawson P (1972) Polarisation measurements in raman spectroscopy. Spectrochim Acta A 28(4):715–723

    Article  ADS  Google Scholar 

  13. Deb SK, Bansal ML, Roy AP (1984) Calculation of error in depolarization ratio measurement due to finite collection angle in laser raman spectroscopy. Appl Spectrosc 38(4):500–504

    Article  ADS  Google Scholar 

  14. Teboul V, Godet JL, Le Duff Y (1992) Collection angle dependence of the depolarization ratio in light-scattering experiments. Appl Spectrosc 46(3):476–478

    Article  ADS  Google Scholar 

  15. Brémard C, Laureyns J, Merlin J-C, Turrell G (1987) Polarization measurements in raman microspectroscopy. i. isotropic samples. J Raman Spectrosc 18(5):305–313

    Article  ADS  Google Scholar 

  16. Turrell G (1984) Analysis of polarization measurements in raman microspectroscopy. J Raman Spectrosc 15(2):103–108

    Article  ADS  Google Scholar 

  17. Holzer W, Le Duff Y, Altmann K (1973) J Dependence of the depolarization ratio of the rotational components of the Q branch of the \({\rm {H}}_{2}\) and \({\rm {D}}_{2}\) Raman band. J Chem Phys 58(2):642–643

    Google Scholar 

  18. Yuanqin Yu, Lin Ke, Zhou Xiaoguo, Wang Hua, Liu Shilin, Ma Xingxiao (2007) Precise measurement of the depolarization ratio from photoacoustic Raman spectroscopy. J. Raman Spectrosc. 38(9):1206–1211

    Google Scholar 

  19. Brun R, Rademakers F (1997) Root—an object oriented data analysis framework. Nucl Instrum Meth A 389(1–2):81–86

    Article  ADS  Google Scholar 

  20. Logan JE, Robertson NA, Hough J (1994) Measurements of birefringence in a suspended sample of fused silica. Opt Commun 107(5–6):342–346

    Article  ADS  Google Scholar 

  21. Shribak M, Inoue S, Oldenbourg R (2002) Polarization aberrations caused by differential transmission and phase shift in high-numerical-aperture lenses: theory, measurement, and rectification. Opt Eng 41(5):943–954

    Article  ADS  Google Scholar 

  22. Engelmann U (1992) Ramanspektroskopische und massenspektroskopische Untersuchungen der Wasserstoffisotope und isotop substituierter Methane. Ph.D. thesis, Kernforschungszentrum Karlsruhe

    Google Scholar 

  23. Proffitt W, Porto SPS (1973) Depolarization ratio in raman spectroscopy as a function of frequency. J Opt Soc Am 63(1):77–80

    Article  ADS  Google Scholar 

  24. del Toro Iniesta JC (2003) Introduction to spectropolarimetry. Cambridge University Press, Cambridge

    Google Scholar 

  25. Collett E (2005) Field guide to polarization, SPIE vol FG05. SPIE, Bellingham

    Google Scholar 

  26. Kita N (2009) Technique to manage polarization aberrations. Opt Rev 16:305–312

    Article  Google Scholar 

  27. McGuire JP, Chipman RA (1994) Polarization aberrations. 1. rotationally symmetric optical systems. Appl Opt 33(22):5080–5100

    Article  ADS  Google Scholar 

  28. Excel—532 nm compact laser: technical data sheet. v2.2. Laser Quantum Ltd., Cheshire, SK4 3GL, England, 2012

    Google Scholar 

  29. Finesse - The ultra quiet CW 532nm laser: Technical data sheet v5.8. Laser Quantum Ltd., Cheshire, SK4 3GL, England, 2012

    Google Scholar 

  30. Synapse CCD (1024) x 256 FIOP (09/2012)—Data sheet. HORIBA Scientific, Kyoto 2012

    Google Scholar 

  31. James TM, Schlösser M, Fischer S, Sturm M, Bornschein B, Lewis RJ, Telle HH (2013) Supporting Information: accurate depolarization ratio measurements for all diatomic hydrogen isotopologues. J Raman Spectrosc 44(6):857–865. doi:10.1002/jrs.4283

    Google Scholar 

  32. Fischer S (2010) Investigations of laser stability in the KATRIN Raman setup and first depolarisation measurements with tritium at TLK. Diploma thesis, Karlsruhe Institute of Technology

    Google Scholar 

  33. Schlösser M (2009) First Laser Raman measurements with tritium for KATRIN and studies of systematic effects of the LARA-setup. Diploma thesis, Karlsruhe Institute of Technology

    Google Scholar 

  34. Sturm M, Schlösser M, Lewis RJ, Bornschein B, Drexlin G, Telle HH (2010) Monitoring of all hydrogen isotopologues at tritium laboratory karlsruhe using raman spectroscopy. Laser Phys 20(2):493–507

    Article  ADS  Google Scholar 

  35. Mirz S (2011) Aufbau und Charakterisierung eines verbesserten Laser-Raman-Systems für das KATRIN-Experiment. Bachelor thesis, Karlsruhe Institute of Technology

    Google Scholar 

  36. Newport Corporation (2012). Calibrated sources and services. Newport resource e-Catalog, pp 233–234

    Google Scholar 

  37. Schlösser M, Fischer S (2011) Investigation of halogen lamps as suitable black body radiators. Internal report, Karlsruhe Institute of Technology

    Google Scholar 

  38. Davidson MW (2012) Fundamentals of light-emitting diodes (LEDs). Carl Zeiss Microscopy Online Campus

    Google Scholar 

  39. Schlösser M (2011) The cLARAbrator—a tool for a true in-situ calibration source of the quantum efficiency of a LARA system. Internal report, Karlsruhe Institute of Technology

    Google Scholar 

  40. Resch-Genger U, Pfeifer D, Monte C, Pilz W, Hoffmann A, Spieles M, Rurack K, Hollandt J, Taubert D, Schö B, Nording P (2005) Traceability in fluorometry: part ii spectral fluorescence standards. J Fluoresc 15:315–336

    Article  Google Scholar 

  41. Ray KG, McCreery RL (1997) Simplified calibration of instrument response function for Raman spectrometers based on luminescent intensity standards. Appl Spectrosc 51(1):108–116.

    Google Scholar 

  42. McCreery RL (2006) Photometric standards for Raman spectroscopy. John Wiley & Sons Ltd, New York

    Google Scholar 

  43. Choquette SJ, Etz ES, Hurst WS, Blackburn DH, Leigh SD (2007) Relative intensity correction of raman spectrometers: nist srms 2241 through 2243 for 785 nm, 532 nm, and 488 nm/514.5 nm excitation. Appl Spectrosc 61(2):117–129

    Article  ADS  Google Scholar 

  44. Certificate of analysis (Standard Ref. Mat. 2242) (2008). NIST, Gaithersburg, MD, USA

    Google Scholar 

  45. KATRIN Collaboration (2005) KATRIN design report 2004. FZK—FZKA 7090

    Google Scholar 

  46. Dieing T, Hollricher O, Toporski J (2011) Confocal Raman microscopy. Springer series in optical sciences. Springer, Berlin

    Google Scholar 

  47. Feofilov PP (1961) The physical basis of polarized emission. Consultants Bureau, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Schlösser .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlösser, M. (2014). Calibration Based on Theoretical Intensities and Spectral Sensitivity (Method I). In: Accurate Calibration of Raman Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06221-1_5

Download citation

Publish with us

Policies and ethics