Skip to main content

Verifying Hybrid Systems Involving Transcendental Functions

  • Conference paper
NASA Formal Methods (NFM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8430))

Included in the following conference series:

Abstract

We explore uses of a link we have constructed between the KeYmaera hybrid systems theorem prover and the MetiTarski proof engine for problems involving special functions such as sin, cos, exp, etc. Transcendental functions arise in the specification of hybrid systems and often occur in the solutions of the differential equations that govern how the states of hybrid systems evolve over time. To date, formulas exchanged between KeYmaera and external tools have involved polynomials over the reals, but not transcendental functions, chiefly because of the lack of tools capable of proving such goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmadi, A.A., Krstic, M., Parrilo, P.A.: A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function. In: CDC-ECE, pp. 7579–7580 (2011)

    Google Scholar 

  2. Brown, C.W.: Qepcad b: a program for computing with semi-algebraic sets using cads. SIGSAM Bull. 37(4), 97–108 (2003), http://doi.acm.org/10.1145/968708.968710

    Article  MATH  Google Scholar 

  3. Chesi, G.: Estimating the domain of attraction for non-polynomial systems via LMI optimizations. Automatica 45(6), 1536–1541 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Denman, W., Akbarpour, B., Tahar, S., Zaki, M., Paulson, L.: Formal verification of analog designs using metitarski. In: Formal Methods in Computer-Aided Design, FMCAD 2009, pp. 93–100 (2009)

    Google Scholar 

  5. Fränzle, M., Herde, C.: Hysat: An efficient proof engine for bounded model checking of hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)

    Article  MATH  Google Scholar 

  6. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Heemels, W., Lehmann, D., Lunze, J., De Schutter, B.: Introduction to hybrid systems. In: Lunze, J., Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Systems Control – Theory, Tools, Applications, ch. 1, pp. 3–30. Cambridge University Press, Cambridge (2009)

    Chapter  Google Scholar 

  8. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for hybrid systems. STTT 1(1-2), 110–122 (1997)

    Article  MATH  Google Scholar 

  9. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Paulson, L.C.: MetiTarski: Past and Future. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Paulson, L.C.: University of Cambridge (2013), http://www.cl.cam.ac.uk/~lp15/papers/Arith/

  12. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)

    Book  Google Scholar 

  13. Platzer, A.: Carnegie Mellon Uniersity (2013), http://symbolaris.com/info/KeYmaera.html

  14. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans. Embedded Comput. Syst. 6(1) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jackson, P., Sogokon, A., Bridge, J., Paulson, L. (2014). Verifying Hybrid Systems Involving Transcendental Functions. In: Badger, J.M., Rozier, K.Y. (eds) NASA Formal Methods. NFM 2014. Lecture Notes in Computer Science, vol 8430. Springer, Cham. https://doi.org/10.1007/978-3-319-06200-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06200-6_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06199-3

  • Online ISBN: 978-3-319-06200-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics