Verifying Hybrid Systems Involving Transcendental Functions

  • Paul Jackson
  • Andrew Sogokon
  • James Bridge
  • Lawrence Paulson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8430)


We explore uses of a link we have constructed between the KeYmaera hybrid systems theorem prover and the MetiTarski proof engine for problems involving special functions such as sin, cos, exp, etc. Transcendental functions arise in the specification of hybrid systems and often occur in the solutions of the differential equations that govern how the states of hybrid systems evolve over time. To date, formulas exchanged between KeYmaera and external tools have involved polynomials over the reals, but not transcendental functions, chiefly because of the lack of tools capable of proving such goals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmadi, A.A., Krstic, M., Parrilo, P.A.: A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function. In: CDC-ECE, pp. 7579–7580 (2011)Google Scholar
  2. 2.
    Brown, C.W.: Qepcad b: a program for computing with semi-algebraic sets using cads. SIGSAM Bull. 37(4), 97–108 (2003), CrossRefMATHGoogle Scholar
  3. 3.
    Chesi, G.: Estimating the domain of attraction for non-polynomial systems via LMI optimizations. Automatica 45(6), 1536–1541 (2009)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Denman, W., Akbarpour, B., Tahar, S., Zaki, M., Paulson, L.: Formal verification of analog designs using metitarski. In: Formal Methods in Computer-Aided Design, FMCAD 2009, pp. 93–100 (2009)Google Scholar
  5. 5.
    Fränzle, M., Herde, C.: Hysat: An efficient proof engine for bounded model checking of hybrid systems. Formal Methods in System Design 30(3), 179–198 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Heemels, W., Lehmann, D., Lunze, J., De Schutter, B.: Introduction to hybrid systems. In: Lunze, J., Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Systems Control – Theory, Tools, Applications, ch. 1, pp. 3–30. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  8. 8.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: Hytech: A model checker for hybrid systems. STTT 1(1-2), 110–122 (1997)CrossRefMATHGoogle Scholar
  9. 9.
    de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Paulson, L.C.: MetiTarski: Past and Future. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Paulson, L.C.: University of Cambridge (2013),
  12. 12.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Platzer, A.: Carnegie Mellon Uniersity (2013),
  14. 14.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Trans. Embedded Comput. Syst. 6(1) (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Paul Jackson
    • 1
  • Andrew Sogokon
    • 1
  • James Bridge
    • 2
  • Lawrence Paulson
    • 2
  1. 1.School of InformaticsUniversity of EdinburghUK
  2. 2.Computer LaboratoryUniversity of CambridgeUK

Personalised recommendations