Recent Developments in Treatment of Cachexia

Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 12)


The cachexia syndrome, present in severe diseases such as cancer, AIDS and COPD, typically displays metabolic abnormalities, such as glucose intolerance, fat depletion and muscle protein catabolism and is usually accompanied by anorexia and, naturally, weight loss. Inflammation is also a key feature in this situation. Nutritional strategies have proved to be insufficient to counteract it. In this chapter we review recent therapeutic approaches developed specifically for these wasting states. The importance of the right timing is stressed, in combination with different nutritional/metabolic/pharmacological approaches.


Lean Body Mass Muscle Wasting Cancer Cachexia Increase Food Intake Cardiac Cachexia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Angiotensin-converting enzyme


Acquired immunodeficiency syndrome


Chronic heart failure
























n-3 Polyunsaturated fatty acids


Eicosapentaenoic acid




Corticotropin releasing factor 2 receptor


Selective androgen receptor modulator


Growth hormone


Insulin-like growth factor-I


Proteolysis-inducing factor


Transforming growth factor-beta


  1. 1.
    Warren KL (1932) The inmediate cause of death in cancer. Am J Med Sci 184(1):3Google Scholar
  2. 2.
    Argiles JM, Alvarez B, Lopez­Soriano FJ (1997) The metabolic basis of cancer cachexia. Med Res Rev 17:477–498CrossRefPubMedGoogle Scholar
  3. 3.
    Evans WJ, Morley JE, Argiles J et al (2008) Cachexia: a new definition. Clin Nutr 27:793–799CrossRefPubMedGoogle Scholar
  4. 4.
    Tomiska M, Tomiskova M, Salajka F et al (2003) Palliative treatment of cancer anorexia with oral suspension of megestrol acetate. Neoplasma 50:227–233PubMedGoogle Scholar
  5. 5.
    Busquets S, Serpe R, Sirisi S, Toledo M, Coutinho J, Martinez R, Orpí M, López-Soriano FJ, Argilés JM (2010) Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. Clin Nutr 29:733–737CrossRefPubMedGoogle Scholar
  6. 6.
    Nagaya N, Kangawa K (2006) Therapeutic potential of ghrelin in the treatment of heart failure. Drugs 66:439–448CrossRefPubMedGoogle Scholar
  7. 7.
    Garcia JM, Polvino WJ (2009) Pharmacodynamic hormonal effects of anamorelin, a novel oral ghrelin mimetic and growth hormone secretagogue in healthy volunteers. Growth Horm IGF Res 19:267–273CrossRefPubMedGoogle Scholar
  8. 8.
    Weyermann P, Dallmann R, Magyar J, Anklin C, Hufschmid M, Dubach-Powell J, Courdier-Fruh I, Henneböhle M, Nordhoff S, Mondadori C (2009) Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 4:e4774.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Dallmann R, Weyermann P, Anklin C, Boroff M, Bray-French K, Cardel B, Courdier-Fruh I, Deppe H, Dubach-Powell J, Erb M, Haefeli RH, Henneböhle M, Herzner H, Hufschmid M, Marks DL, Nordhoff S, Papp M, Rummey C, Santos G, Schärer F, Siendt H, Soeberdt M, Sumanovski LT, Terinek M, Mondadori C, Güven N, Feurer A (2011) The orally active melanocortin-4 receptor antagonist BL-6020/979: a promising candidate for the treatment of cancer cachexia. J Cachexia Sarcopenia Muscle 2:163–174PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Rossi-Fanelli F, Cangiano C (1991) Increased availability of tryptophan in brain as a common pathogenic mechanism for anorexia associated with different diseases. Nutrition 7:364–367PubMedGoogle Scholar
  11. 11.
    Kardinal CG, Loprinzi CL, Schaid DJ et al (1990) A controlled trial of cyproheptadine in cancer patients with anorexia. Cancer 65:2657–2662CrossRefPubMedGoogle Scholar
  12. 12.
    Couluris M, Mayer JL, Freyer DR, Sandler E, Xu P, Krischer JP (2008) The effect of cyproheptadine hydrochloride (periactin) and megestrol acetate (megace) on weight in children with cancer/treatment-related cachexia. J Pediatr Hematol Oncol 30:791–797PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Sampaio EP, Sarno EN, Galilly R, Cohn ZA, Kaplan G (1991) Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 173:699–703CrossRefPubMedGoogle Scholar
  14. 14.
    Gordon JN, Trebble TM, Ellis RD, Duncan HD, Johns T, Goggin PM (2005) Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut 54:540–545PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Monk JP, Phillips G, Waite R, Kuhn J, Schaaf LJ, Otterson GA, Guttridge D, Rhoades C, Shah M, Criswell T, Caligiuri MA, Villalona-Calero MA (2006) Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J Clin Oncol 24:1852–1859CrossRefPubMedGoogle Scholar
  16. 16.
    Steffen BT, Lees SJ, Booth FW (2008) Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J Appl Physiol 105:1950–1958CrossRefPubMedGoogle Scholar
  17. 17.
    Figueras M, Busquets S, Carbo N, Barreiro E, Almendro V, Argilés JM, López-Soriano FJ (2004) Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Lett 569:201–206CrossRefPubMedGoogle Scholar
  18. 18.
    Busquets S, Figueras MT, Meijsing S, Carbó N, Quinn LS, Almendro V, Argilés JM, López-Soriano FJ (2005) Interleukin-15 decreases proteolysis in skeletal muscle: a direct effect. Int J Mol Med 16:471–476PubMedGoogle Scholar
  19. 19.
    Homem-de-Bittencourt Júnior PI, Pontieri V, Curi R, Lopes OU (1989) Effects of aspirin-like drugs on Walker 256 tumor growth and cachexia in rats. Braz J Med Biol Res 22:1039–1042PubMedGoogle Scholar
  20. 20.
    McCarthy DO, Daun JM (1993) The effects of cyclooxygenase inhibitors on tumor-induced anorexia in rats. Cancer 7:486–492CrossRefGoogle Scholar
  21. 21.
    Hussey HJ, Tisdale MJ (2000) Effect of the specific cyclooxygenase-2 inhibitor meloxicam on tumour growth and cachexia in a murine model. Int J Cancer 87:95–100CrossRefPubMedGoogle Scholar
  22. 22.
    Fearon KC, Von Meyenfeldt MF, Moses AG, Van Geenen R, Roy A, Gouma DJ, Giacosa A, Van Gossum A, Bauer J, Barber MD, Aaronson NK, Voss AC, Tisdale MJ (2003) Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial. Gut 52:1479–1486PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Fearon KC, Barber MD, Moses AG, Ahmedzai SH, Taylor GS, Tisdale MJ, Murray GD (2006) Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. J Clin Oncol 24:3401–3407CrossRefPubMedGoogle Scholar
  24. 24.
    Dewey A, Baughan C, Dean T, Higgins B, Johnson I (2007) Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst Rev 24, CD004597Google Scholar
  25. 25.
    Read JA, Beale PJ, Volker DH, Smith N, Childs A, Clarke SJ (2007) Nutrition intervention using an eicosapentaenoic acid (EPA)-containing supplement in patients with advanced colorectal cancer. Effects on nutritional and inflammatory status: a phase II trial. Support Care Cancer 15:301–307CrossRefPubMedGoogle Scholar
  26. 26.
    Ryan AM, Reynolds JV, Healy L, Byrne M, Moore J, Brannelly N, McHugh A, McCormack D, Flood P (2009) Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery: results of a double-blinded randomized controlled trial. Ann Surg 249:355–363CrossRefPubMedGoogle Scholar
  27. 27.
    Busquets S, Figueras MT, Fuster G, Almendro V, Moore-Carrasco R, Ametller E, Argilés JM, López-Soriano FJ (2004) Anticachectic effects of formoterol: a drug for potential treatment of muscle wasting. Cancer Res 64:6725–6731CrossRefPubMedGoogle Scholar
  28. 28.
    Kanzaki M, Soda K, Gin PT, Kai T, Konishi F, Kawakami M (2005) Erythropoietin attenuates cachectic events and decreases production of interleukin-6, a cachexia-inducing cytokine. Cytokine 32:234–239CrossRefPubMedGoogle Scholar
  29. 29.
    Lainscak M, Keber I, Anker SD (2006) Body composition changes in patients with systolic heart failure treated with beta blockers: a pilot study. Int J Cardiol 106:319–322CrossRefPubMedGoogle Scholar
  30. 30.
    Storer TW, Woodhouse LJ, Sattler F, Singh AB, Schroeder ET, Beck K, Padero M, Mac P, Yarasheski KE, Geurts P, Willemsen A, Harms MK, Bhasin S (2005) A randomized, placebo-controlled trial of nandrolone decanoate in human immunodeficiency virus-infected men with mild to moderate weight loss with recombinant human growth hormone as active reference treatment. J Clin Endocrinol Metab 90:4474–4482CrossRefPubMedGoogle Scholar
  31. 31.
    Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle 2:153–161PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Wolf RF, NgB WB, Burt M, Brennan MF (1994) Effect of growth hormone on tumor and host in an animal model. Ann Surg Oncol 1:314–320CrossRefPubMedGoogle Scholar
  33. 33.
    Wolf RF, Pearlstone DB, Newman E, Heslin MJ, Gonenne A, Burt ME, Brennan MF (1992) Growth hormone and insulin reverse net whole body and skeletal muscle protein catabolism in cancer patients. Ann Surg 216:280–288PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    NgB WRF, Weksler B, Brennan MF, Burt M (1993) Growth hormone administration preserves lean body mass in sarcoma-bearing rats treated with doxorubicin. Cancer Res 53:5483–5486Google Scholar
  35. 35.
    O’Driscoll JG, Green DJ, Ireland M, Kerr D, Larbalestier RI (1997) Treatment of end-stage cardiac failure with growth hormone. Lancet 349:1068CrossRefPubMedGoogle Scholar
  36. 36.
    McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209:501–514CrossRefPubMedGoogle Scholar
  37. 37.
    Argilés JM, Figueras M, Ametller E, Fuster G, Olivan M, de Oliveira CC, López-Soriano FJ, Isfort RJ, Busquets S (2008) Effects of CRF2R agonist on tumor growth and cachexia in mice implanted with Lewis lung carcinoma cells. Muscle Nerve 37:190–195CrossRefPubMedGoogle Scholar
  38. 38.
    Penna F, Busquets S, Pin F, Toledo M, Baccino FM, López-Soriano FJ, Costelli P, Argilés JM (2011) Combined approach to counteract experimental cancer cachexia: eicosapentaenoic acid and training exercise. J Cachexia Sarcopenia Muscle 2:95–104PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Argilés JM, López-Soriano FJ, Stemmler B, Busquets S (2013) Latest developments in cachexia drug discovery: clinical trials. In: Argilés JM, Busquets S (eds) Cancer Cachexia e-book. Future Medicine Ltd, LondonCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  1. 1.Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
  3. 3.BS Nutrition CentreBarcelonaSpain

Personalised recommendations