Skip to main content

Expect the Unexpected! Groundwater Flow in Karstified Carbonate Aquifers

  • Chapter
  • First Online:
H2Karst Research in Limestone Hydrogeology

Part of the book series: Environmental Earth Sciences ((EESCI))

Abstract

Aquifers in carbonate rocks characteristically display triple porosity, the most complex type of groundwater flow system. The complexity arises from antecedent geological conditions, from local geomorphology and climate, and from the patterns of solutional conduits (including accessible caves) and their relationships with any matrix or fracture flow. Much is being learned from study of calcite and other precipitates in such caves. Where not directly accessible, karst aquifers are best approached by study of natural springs, recharge sink points and dye tracing; wells and boreholes are secondary sources. Double continuum and triple porosity designs are most suitable for computer predictive modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonioli F, Bard E, Potter E-K et al (2004) 215-ka history of sea level oscillations in Argenterola cave speleothems Italy. Global Planet Change 43(1–2):57–78

    Article  Google Scholar 

  • Audra P (1994) Karsts alpins. Gènese des grands rèseaux souterrains, Karstologia, Mémoires

    Google Scholar 

  • Audra P, Palmer AN (2012) The vertical dimension of Karst: controls of vertical cave patterns. In: Frumkin A (ed) Karst geomorphology, in treatise on geomorphology, (Shroder JF, General ed), volume 6. Amsterdam, Elsevier pp 186–206

    Google Scholar 

  • Bakalowicz M (1976) Géochimie des eaux karstiques. Une methode d’etude de l’organisation des ecoulements souterrains. Annales Scientifiques de l’ Universite de Besancon 25:49–58

    Google Scholar 

  • Dassargues A (ed) (2000) Tracers and modelling in hydrology. Publication 262, International Association of Hydrologists

    Google Scholar 

  • Dreybrodt W, Gabrovsek F, Romanov D (2005) Processes of speleogenesis: a modeling approach. ZRC Publishing, Carsologica, Lubljana 376 pp

    Google Scholar 

  • Edwards RL, Cheng H, Wasserburg GJ (1986/1987) 238U-234U-230Th-232Th systematic and the precise measurements of time over the past 500,000 years. Earth Planet Sci Lett 81:175–192

    Google Scholar 

  • Ewers RO (1982) Cavern development in the dimensions of length and breadth. PhD thesis, McMaster University, Hamilton 398 pp

    Google Scholar 

  • Fairchild LJ, Baker A (2012) Speleothem science. Wiley-Blackwell, Chichester 432 p

    Book  Google Scholar 

  • Ford DC (1971) Geologic structure and a new explanation of limestone cavern genesis. Cave Res Group Great Brit, Trans 13:81–94

    Google Scholar 

  • Ford DC, Ewers RO (1978) The development of limestone cave systems in the dimensions of length and depth. Can J Earth Sci 15(11):1783–1798

    Article  Google Scholar 

  • Ford DC, Williams PW (1989) Karst Geomorphology and Hydrology. Unwin-Hyman, London 601 p

    Book  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester 562 p

    Book  Google Scholar 

  • Genty D (1992) Les spéléothemes du tunnel de Godarville (Belgique)—un exemple exceptionnel de concrétionnement moderne. Spéléochronos 4: 3–29

    Google Scholar 

  • Grund A (1903) Die karsthydrographie: studien aus westbosnien. Geographischen Abhandlungen, Band VII, Heft 3, von A. Penck 7:103–200

    Google Scholar 

  • Gunn J (ed) (2004) Encyclopedia of caves and karst science. Fitzroy Dearborn, New York, 902 p

    Google Scholar 

  • Hill CA, Forti P (1997) Cave minerals of the world. National Speleological Society of America, Huntsville, AL 463 p

    Google Scholar 

  • Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular groundwater model. USGS techniques and methods 6-A16

    Google Scholar 

  • Jakucs L (1977) Morphogenetics of Karst regions: variants of Karst evolution. AkademiaiKiado, Budapest 284 p

    Google Scholar 

  • Kiraly L (1998) Modelling Karst aquifers by the combined discrete channel and continuum approach. Bulletin d’Hydrogéologie (Neuchatel), 16

    Google Scholar 

  • Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) (2000) Speleogenesis; evolution of Karst aquifers. National Speleological Society Press, Huntsville, AL, 527 p

    Google Scholar 

  • Krawczyk WE, Ford DC (2006) Correlating specific conductivity with total hardness in limestone and dolomite Karst waters. Earth Surf Proc Land 31:221–234

    Article  CAS  Google Scholar 

  • Kresic N (2013) Water in Karst: management vulnerability and restoration. McGraw-Hill, New York 707 p

    Google Scholar 

  • Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs. Butterworth-Heinemann, Oxford 573 p

    Google Scholar 

  • Lauritzen S-E, Abbott J, Arnesen R et al (1985) Morphology and hydraulics of an active phreatic conduit. Cave Sci 12(4):139–146

    Google Scholar 

  • Li W-X, Lundberg J, Dickin AP, Ford DC, Schwarcz HP, McNutt R, Williams D (1989) High precision mass spectrometric dating of speleothem and implications for paleoclimate studies. Nature 339(6225):534–536

    Article  CAS  Google Scholar 

  • Ludwig KR, Simmons KR, Szabo BJ et al (1992) Mass-spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein. Science 258:284–287

    Article  CAS  Google Scholar 

  • Lundberg J, Ford DC, Hill CA (2000) A preliminary U-Pb date on cave spar, big Canyon, Guadalupe mountains, New Mexico, U.S.A. J Cave Karst Stud 62:144–148

    CAS  Google Scholar 

  • Mangin A (1974/1975) Contribution a l’étude hydrodynamique des aquifères karstiques. Annales de Spéléologie 29: 283–332, 495–601; 30: 21–124

    Google Scholar 

  • Moore CH (2001) Carbonate reservoirs: porosity, evolution and diagenesis in a sequence stratigraphic framework, Developments in Sedimentology 55. Elsevier, Amsterdam 444 p

    Google Scholar 

  • Mylroie JE, Carew JL (1990) The flank margin model for dissolution cave development in carbonate platforms. Earth Surf Proc Land 15:413–424

    Article  Google Scholar 

  • Palmer AN (2007) Cave geology. Cave Books Dayton, OH 454 p

    Google Scholar 

  • Polyak V, Hill CA, Asmerom Y (2008) Age and evolution of the Grand Canyon revealed by U-Pb dating of water table-type speleothems. Science 319:1377–1380

    Article  CAS  Google Scholar 

  • Reimann T, Hill ME (2009) MODFLOW-CFP: a new conduit flow process for MODFLOW-2005. Ground Water. doi:10.1111/j.1745-6584.2009.00561.x

  • Railsback LB, Brook GA, Chen J, Kalin R, Fleisher CJ (1994) Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. J Sediment Res 64:147–155

    Google Scholar 

  • Salomon J-N, Maire R (eds) (1992) Karst et evolutions climatiques. Presses Universitaires, Bordeaux, 520 p

    Google Scholar 

  • Sauter M, Liedl R (2000) Modelling karst aquifer genesis using a coupled continuum- pipe flow model. In: Klimckouk et al. op.cit 212–219

    Google Scholar 

  • Scholle PA, Bebout DG, Moore CH (eds) (1983) Carbonate depositional environments. Memoir 33, American Association of Petroleum Geologists, Tulsa, OK, 761 p

    Google Scholar 

  • Shopov YY (1987) Laser luminescent micro-zonal analysis (of calcite speleothems). In: Kiknadze KT (ed) Problems of Karst studies of mountainous countries. Metsniereba, Tbilisi, pp 104–108

    Google Scholar 

  • Shopov YY, Ford DC, Schwarcz HP (1994) Luminescent microbanding in speleothems: High resolution chronology and paleoclimate. Geology 22(5):407–410

    Article  Google Scholar 

  • Smart PL, Freiderich H (1987) Water movement and storage in the unsaturated zone of a maturely Karstified carbonate aquifer, Mendip Hills, England. In: Proceedings, Environmental Problems in Karst Terranes and their Solutions. National Water Well Association, Dublin, OH, pp 59–87

    Google Scholar 

  • Smith DI, Atkinson TC, Drew DP (1976) The hydrology of limestone terrains. In: Ford TD, Cullingford CHD (eds) The science of speleology. Academic Press, London, pp 179–212

    Google Scholar 

  • Thompson P, Schwarcz HP, Ford DC (1974) Continental pleistocene climatic variations inferred from speleothem age and isotopic data. Science 184(4139):893–895

    Article  CAS  Google Scholar 

  • Vacher L, Mylroie JE (2002) Eogenetic karst from the perspective of an equivalent porous medium. Carbonates and Evaporites 17(2):182–196

    Article  Google Scholar 

  • van Beynen PE, Bourbonniere R, Ford DC, Schwarcz HP (2001) Causes of colour and fluorescence in speleothems. Chem Geol 175:319–341

    Article  Google Scholar 

  • Waltham AC, Bell F, Culshaw M (2004) Sinkholes and subsidence: Karst and Cavernous Rocks in engineering and construction. Springer, Berlin 382 p

    Google Scholar 

  • Wang YJ, Cheng H, Edwards RL (2001) A high resolution absolute dated record late Pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348

    Article  CAS  Google Scholar 

  • Worthington SRH (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17:1665–1678

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Ford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ford, D. (2014). Expect the Unexpected! Groundwater Flow in Karstified Carbonate Aquifers. In: Mudry, J., Zwahlen, F., Bertrand, C., LaMoreaux, J. (eds) H2Karst Research in Limestone Hydrogeology. Environmental Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-06139-9_1

Download citation

Publish with us

Policies and ethics