Skip to main content

A Survey of Hierarchical Model (Hi-Mod) Reduction Methods for Elliptic Problems

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 33))

Abstract

In this work, we review the basic aspects of the so called Hierarchical Model (Hi-Mod) reduction approach, recently advocated to reduce the complexity of models for advection-diffusion-reaction phenomena in pipe-like domains featuring a prevalent axial dynamics. The Hi-Mod approach aims at reducing the computational costs still preserving a reliable approximation of the transverse components of the solution by properly combining finite elements and modal approximations. In particular, we consider the convergence of this approximation to the solution of the full problem and the different ways for selecting the number of transverse modes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Achchab B, Achchab S, Agouzal A (2004) Some remarks about the hierarchical a posteriori error estimate. Numer Meth Partial Differ Equ 20(6):919–932

    Article  MATH  MathSciNet  Google Scholar 

  2. Ainsworth M (1998) A posteriori error estimation for fully discrete hierarchic models of elliptic boundary value problems on thin domains. Numer Math 80:325–362

    Article  MATH  MathSciNet  Google Scholar 

  3. Aletti M, Perotto S, Veneziani A (2014) Educated bases for hierarchical model reduction in 2D and 3D. (in preparation)

    Google Scholar 

  4. Babuška I, Schwab C (1996) A posteriori error estimation for hierarchic models of elliptic boundary value problems on thin domains. SIAM J Numer Anal 33:221–246

    Article  MATH  MathSciNet  Google Scholar 

  5. Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Birkhauser, Basel

    Google Scholar 

  6. Bank RE, Smith RK (1993) A posteriori error estimates based on hierarchical bases. SIAM J Numer Anal 30:921–935

    Article  MATH  MathSciNet  Google Scholar 

  7. Blanco PJ, Leiva JS, Feijóo RA, Buscaglia GC (2011) Black-box decomposition approach for computational hemodynamics: one-dimensional models. Comput Methods Appl Mech Eng 200(13–16):1389–1405

    Google Scholar 

  8. Canuto C, Maday Y, Quarteroni A (1982) Analysis of the combined finite element and Fourier interpolation. Numer Math 39:205–220

    Google Scholar 

  9. Canuto C, Maday Y, Quarteroni A (1984) Combined finite element and spectral approximation of the Navier-Stokes equations. Numer Math 44:201–217

    Google Scholar 

  10. Dörfler W, Nochetto RH (2002) Small data oscillation implies the saturation assumption. Numer Math 91:1–12

    Article  MATH  MathSciNet  Google Scholar 

  11. Ern A, Perotto S, Veneziani A (2008) Hierarchical model reduction for advection-diffusion-reaction problems. In: Kunisch K, Of G, Steinbach O (eds) Numerical mathematics and advanced applications, pp 703–710. Springer, Heidelberg

    Google Scholar 

  12. Formaggia L, Nobile F, Quarteroni A, Veneziani A (1999) Multiscale modelling of the circulatory system: a preliminary analysis. Comput Visual Sci 2:75–83

    Article  MATH  Google Scholar 

  13. Formaggia L, Quarteroni A, Veneziani A (eds) (2009) Cardiovascular mathematics, modeling, simulation and applications, vol 1. Springer, Berlin

    Google Scholar 

  14. Giles MB, Süli E (2002) Adjoint methods for pdes: a posteriori error analysis and postprocessing by duality. Acta Numer 11:145–236

    Article  MATH  MathSciNet  Google Scholar 

  15. Heinrich B (1996) The Fourier-finite-element method for Poisson’s equation in axisymmetric domains with edges. SIAM J Numer Anal 33:1885–1911

    Google Scholar 

  16. Johnson C (1993) A new paradigm for adaptive finite element methods. In: Whiteman J (eds) Proceedings of MAFELAP, vol 93. Wiley, New York

    Google Scholar 

  17. Lasis A, Süli E (2003) Poincaré-type inequalities for broken Sobolev spaces. Technical Report 03–10. Oxford University Computing Laboratory

    Google Scholar 

  18. Lions J-L, Magenes E (1972) Non-homogeneous boundary value problems and applications. Springer, Berlin

    Google Scholar 

  19. Lorenz B, Biros G, Ghattas O, Heinkenschloss M, Keyes D, Mallick B, Tenorio L, van Bloemen Waanders B, Willcox K, Marzouk Y (eds) (2011) Large-scale inverse problems and quantification of uncertainty, vol 712. Wiley, Chichester

    Google Scholar 

  20. Oden JT, Prudhomme S (2001) Goal-oriented error estimation and adaptivity for the finite element method. Comput Math Appl 41:735–756

    Article  MATH  MathSciNet  Google Scholar 

  21. Perotto S (2014) Hierarchical model (Hi-Mod) reduction in non-rectilinear domains. In: Erhel J, Gander M, Halpern L, Pichot G, Sassi T, Widlund O (eds) Lecture Notes in Computer Science Engineering. Springer, Berlin,pp 407–414

    Google Scholar 

  22. Perotto S, Ern A, Veneziani A (2010) Hierarchical local model reduction for elliptic problems: a domain decomposition approach. Multiscale Model Simul 8(4):1102–1127

    Article  MATH  MathSciNet  Google Scholar 

  23. Perotto S, Veneziani A (2014) Coupled model and grid adaptivity in hierarchical reduction of elliptic problems. J Sci Comput. doi:10.1007/s10915-013-9804-y

  24. Perotto S, Zilio A (2013) Hierarchical model reduction: three different approaches. In: Cangiani A, Davidchack R, Georgoulis E, Gorban A, Levesley J, Tretyakov M (eds) Numerical mathematics and advanced applications, pp 851–859. Springer, Berlin

    Google Scholar 

  25. Perotto S, Zilio A (2014) Hierarchical model reduction for time dependent problems. (in preparation)

    Google Scholar 

  26. Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. In: Numerical mathematics and scientific computation. Oxford University Press, New York

    Google Scholar 

  27. Toselli A, Widlund O (2005) Domain decomposition methods-algorithms and theory. Springer, Berlin

    Google Scholar 

  28. Vogelius M, Babuška I (1981) On a dimensional reduction method I. the optimal selection of basis functions. Math Comput 37:31–46

    Google Scholar 

  29. Vogelius M, Babuška I (1981) On a dimensional reduction method II. some approximation-theoretic results. Math Comput 37:47–68

    Google Scholar 

  30. Vogelius M, Babuška I (1981) On a dimensional reduction method III. a posteriori error estimation and an adaptive approach. Math Comput 37:361–384

    Google Scholar 

Download references

Acknowledgments

The author thanks Massimiliano Lupo Pasini for Figs. 7 and 12 and Alessandro Veneziani for the suggestions during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Perotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perotto, S. (2014). A Survey of Hierarchical Model (Hi-Mod) Reduction Methods for Elliptic Problems. In: Idelsohn, S. (eds) Numerical Simulations of Coupled Problems in Engineering. Computational Methods in Applied Sciences, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-06136-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06136-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06135-1

  • Online ISBN: 978-3-319-06136-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics