Skip to main content

Polymer Nanofluidics by Broadband Dielectric Spectroscopy

  • Chapter
  • First Online:
Dynamics in Geometrical Confinement

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

A multitude of experimental techniques can be employed to investigate the dynamics of polymers under condition of geometric confinement. Among them, Broadband Dielectric Spectroscopy has proven its strength in this research field, being used in numerous investigations on polymer dynamics in samples having one, two, or three dimensions on the nanometer length scale. However, in most cases, the investigated polymers were subjected to constraints arising only from a “static” confinement, where the dimensionality of the confining geometry and the interfacial interactions played the most important role. In addition to these static factors, kinetic constraints and frustrations arise when polymers are flowing in nanometric confinement. Measuring polymer dynamics during flow in nanoconfinement is a challenging task, which requires the development of new experimental procedures and methods. Here, we show that different aspects of the flow process of polymers in cylindrical nanopores can be investigated by means of Broadband Dielectric Spectroscopy, using a recently developed experimental approach, which employs highly ordered nanoporous media as nanofluidics cell. No significant shifts in the glassy dynamics of poly-2-vinylpyridine (P2VP) investigated during capillary flow into nanopores are found down to a pore diameter of 18 nm. In the case of phase-separated polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) flowing into nanopores, no shifts in the dynamic glass transition of the P4VP blocks are observed down to a confinement size allowing the flow of only one (single) copolymer domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAO:

Anodized aluminum oxide

\(^{\circ }\)C:

Degree(s) Celsius

g:

Gram(s)

h:

Hour(s)

Hz:

Hertz

K:

Degree(s) kelvin

kHz:

Kilohertz

\(\upmu \)m:

Micrometer(s)

min:

Minute(s)

Mn:

Number-averaged molecular weight

mol:

Mole(s)

Mw:

Weight-averaged molecular weight

NaOH:

Sodium hydroxide

nm:

Nanometer(s)

P2VP:

Poly-2-vinylpyridine

P4VP:

Poly-4-vinylpyridine

PCDF-TrFE:

Polyvinylidene fluoride trifluoroethylene

PDI:

Polydispersity index

PS:

Polystyrene

PS-b-P4VP:

Polystyrene-block-poly-4-vinylpyridine

PVDF:

Polyvinylidene fluoride

SAXS:

Small angle X-ray scattering

TEM:

Transmission electron microscopy

Tg:

Glass transition temperature

TrFE:

Trifluoroethylene

V:

Volt(s)

References

  1. Lagrené K, Zanotti J-M, Daoud M, Farago B, Judeinstein P (2010) Eur Phys J ST 189:231

    Article  Google Scholar 

  2. Ok S, Steinhart M, Serbescu A, Franz C, Vaca Chávez F, Saalwächter K (2010) Macromolecules 43:4429

    Google Scholar 

  3. Tress M, Mapesa EU, Kossack W, Kipnusu WK, Reiche M, Kremer F (2013) Science 341:1371

    Article  CAS  Google Scholar 

  4. Mapesa EU, Tress M, Schulz G, Huth H, Schick C, Reiche M, Kremer F (2013) Soft Matter 9:10592–10598

    Article  CAS  Google Scholar 

  5. Suzuki Y, Duran H, Steinhart M, Butt H-J, Floudas G (2013) Soft Matter 9:2621

    Article  CAS  Google Scholar 

  6. Krutyeva M, Wischnewski A, Monkenbusch M, Willner L, Maiz J, Mijangos C, Arbe A, Colmenero J, Radulescu A, Holderer O, Ohl M, Richter D (2013) Phys Rev Lett 110:11

    Google Scholar 

  7. Suzuki Y, Duran H, Akram W, Steinhart M, Floudas G, Butt H-J (2013) Soft Matter 9:9189

    Article  CAS  Google Scholar 

  8. Dimitrov DI, Milchev A, Binder K (2007) Phys Rev Lett 99:054501

    Article  CAS  Google Scholar 

  9. Schönhals A, Goering H, Schick C, Frick B, Zorn R (2003) Eur Phys J E Soft Matter 12:173

    Article  Google Scholar 

  10. Serghei A, Chen D, Lee DH, Russell TP (2010) Soft Matter 6:1111

    Article  CAS  Google Scholar 

  11. Serghei A, Zhao W, Wei X, Chen D, Russell TP (2010) Eur Phys J Spec Top 189:95

    Article  CAS  Google Scholar 

  12. Serghei A, Huth H, Schick C, Kremer F (2008) Macromolecules 41:3636

    Google Scholar 

  13. Serghei A, Kremer F (2008) Rev Sci Instrum 79:026101

    Article  CAS  Google Scholar 

  14. Serghei A, Kremer F (2006) Rev Sci Instrum 77:116108

    Article  Google Scholar 

  15. Masuda H, Fukuda K (1995) Science 268:1466

    Google Scholar 

  16. Masuda H, Hasegwa F, Ono S (1997) J Electrochem Soc 144:127

    Article  Google Scholar 

  17. Zhao S, Roberge H, Yelon A, Veres T (2006) J Am Chem Soc 128:12352

    Article  CAS  Google Scholar 

  18. Washburn EW (1921) Phys Rev 17:273

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoli Serghei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serghei, A. (2014). Polymer Nanofluidics by Broadband Dielectric Spectroscopy. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_7

Download citation

Publish with us

Policies and ethics