Dynamics in Geometrical Confinement pp 151-163

Part of the Advances in Dielectrics book series (ADVDIELECT) | Cite as

Rotational and Translational Diffusion of Ionic Liquids in Silica Nanopores

  • Ciprian Iacob
  • Joshua Sangoro
  • Wycliffe Kipnusu
  • Friedrich Kremer
Chapter

Abstract

Diffusion in ionic liquids (ILs) contained in silica nanopores is investigated in a wide frequency and temperature range by a combination of Broadband Dielectric Spectroscopy (BDS) and Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR). By applying the Einstein-Smoluchowski relations to the dielectric spectra, diffusion coefficients are obtained in quantitative agreement with independent PFG NMR. More than tenfold systematic decrease in the effective diffusion coefficient (for [HMIM] [PF\(_{6}\)]) from the bulk value is observed in the silica nanopores. A model assuming a reduced mobility at the IL/porous matrix is proposed and shown to provide quantitative explanation for the remarkable decrease of effective transport quantities (such as diffusion coefficient, DC conductivity and consequently, the dielectric loss) of the IL in bare porous silica membranes. This approach is supported by the observation that silanization of silica nanopores results in significant increase of the effective diffusion coefficient, which approaches the value for the bulk liquid. For a different IL ([BMIM] [BF\(_{4}\)]), it is observed that ionic mobility at lower temperatures is enhanced by more than two decades under nanoconfinement in comparison to the bulk value. This increase in the diffusivity is attributed to reduced packing density of the ions in the nanopores. In summary, the resultant macroscopic transport properties of glass-forming ILs in confining space are determined by a subtle interplay between surface- and confinement-effects.

Keywords

Ionic liquids Diffusion Confinement and surface effects Broadband dielectric spectroscopy Silica nanopores Ionic mobility 

Abbreviations

BDS

Broadband Dielectric Spectroscopy

BMIM BF\(_{4}\)

1-Butyl-3-methylimidazolium tetrafluoroborate

FTIR

Fourier Transform Infrared

HMDS

Hexamethyldisilazane

HMIM PF\(_{6}\)

1-hexyl-3-methylimidazolium hexafluorophosphate

NMR

Nuclear Magnetic Resonance

PFG NMR

Pulsed Field Gradient Nuclear Magnetic Resonance

SEM/TEM

Scanning and Tunneling Electron Microscopy

VFT

Vogel-Fulcher-Tammann

References

  1. 1.
    Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, BerlinGoogle Scholar
  2. 2.
    Le Bideau J et al (2007) Effect of confinement on ionic liquids dynamics in monolithic silica ionogels: 1H NMR study. Phys Chem Chem Phys 9(40):5419–5422CrossRefGoogle Scholar
  3. 3.
    Davenport M et al (2009) Squeezing Ionic liquids through nanopores. Nano Lett 9(5):2125–2128CrossRefGoogle Scholar
  4. 4.
    Iacob C et al (2010) Charge transport and diffusion of ionic liquids in nanoporous silica membranes. Phys Chem Chem Phys 12(41):13798–13803CrossRefGoogle Scholar
  5. 5.
    Shi W, Sorescu DC (2010) Molecular simulations of CO\(_2\) and H\(_2\) sorp tion into ionic liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim] [Tf2N]) confined in carbon nanotubes. J Phys Chem B 114(46):15029–15041Google Scholar
  6. 6.
    Wang S, et al (2009) Molecular dynamic simulations of ionic liquids at graphite surface. J Phys Chem C 114(2):990–995Google Scholar
  7. 7.
    Sangoro JR, Kremer F (2012) Charge transport and glassy dynamics in ionic liquids. Acc Chem Res 45(4):525–532CrossRefGoogle Scholar
  8. 8.
    Einstein A (1905) On the motion of small particles suspended in liquids at rest, required by the molecular-kinetic theory of heat. Ann Phys 17:549–560CrossRefGoogle Scholar
  9. 9.
    Smoluchowscki M (1906) Essay on the theory of Brownian motion and disor dered media. Ann Phys 21:755–780Google Scholar
  10. 10.
    Sangoro JR et al (2011) Diffusion in ionic liquids: the interplay between mo lecular structure and dynamics. Soft Matter 7(5):1678–1681CrossRefGoogle Scholar
  11. 11.
    Iacob C, Sangoro JR, Kipnusu WK, Valiullin R, Kärger J, Kremer F (2011) Enhanced charge transport in nanoconfined ionic liquids. Soft Matter 8:289–293CrossRefGoogle Scholar
  12. 12.
    Scott GD, Kilgour DM (1969) The density of random close packing of spheres. J Phys D: Appl Phys 2(6):863–866CrossRefGoogle Scholar
  13. 13.
    Roth R (2010) Fundamental measure theory for hard-sphere mixtures: a re view. J Phys Condens Matter 22(6):063102CrossRefGoogle Scholar
  14. 14.
    Luchnikov VA, Medvedev NN, Gavrilova ML (2001) The Voronoi- Delaunay approach for modeling the packing of balls in a cylindrical container. In: Proceedings of the International Conference on Computational Sciences-Part I2001. Springer-Verlag, New York, pp 748–752Google Scholar
  15. 15.
    Finney JL (1970) Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc R Soc Lond A 319(1539):479–493CrossRefGoogle Scholar
  16. 16.
    Luchnikov VA et al (1999) Voronoi-Delaunay analysis of voids in systems of nonspherical particles. Phys Rev E 59(6):7205CrossRefGoogle Scholar
  17. 17.
    Spiess HW (2010) Interplay of structure and dynamics in macromolecular and supramolecular systems. Macromolecules 43(13):5479–5491CrossRefGoogle Scholar
  18. 18.
    Sen PN (2004) Time-dependent diffusion coefficient as a probe of geometry. Concepts Magn Reson Part A 23:1Google Scholar
  19. 19.
    Naumov S, Khokhlov A, Valiullin R, Karger J, Monson PA (2008) Understanding capillary condensation and hysteresis in porous silicon: network effects within independent pores. Phys Rev E: Stat Nonlinear Soft Matter Phys 78:060601CrossRefGoogle Scholar
  20. 20.
    Wallacher D, Künzner N, Kovalev D, Knorr N, Knorr K (2004) Capillary condensation in linear mesopores of different shape. Phys Rev Lett 92:19CrossRefGoogle Scholar
  21. 21.
    Gratz M, Wehring M, Galvosas P, Stallmach F (2009) Multidimen sional NMR diffusion studies in microporous materials. Microporous Mesoporous Mater 125:30–34CrossRefGoogle Scholar
  22. 22.
    Kipnusu WK, Kossack W, Iacob C, Zeigermann P, Jasiurkowska M, Sangoro JR, Valiullin R, Kremer F (2013) The interplay between inter- and intramolecular dynamics in a series of alkylcitrates. Soft Matter 9:4681–4686CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ciprian Iacob
    • 1
  • Joshua Sangoro
    • 2
  • Wycliffe Kipnusu
    • 3
  • Friedrich Kremer
    • 3
  1. 1.Department of Materials Science and EngineeringPenn State UniversityState CollegeUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Institute of Experimental Physics IUniversity of LeipzigLeipzigGermany

Personalised recommendations