Skip to main content

Finite State Incompressible Infinite Sequences

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2014)

Abstract

In this paper we define and study finite state complexity of finite strings and infinite sequences and study connections of these complexity notions to randomness and normality. We show that the finite state complexity does not only depend on the codes for finite transducers, but also on how the codes are mapped to transducers. As a consequence we relate the finite state complexity to the plain (Kolmogorov) complexity, to the process complexity and to prefix-free complexity. Working with prefix-free sets of codes we characterise Martin-Löf random sequences in terms of finite state complexity: the weak power of finite transducers is compensated by the high complexity of enumeration of finite transducers. We also prove that every finite state incompressible sequence is normal, but the converse implication is not true. These results also show that our definition of finite state incompressibility is stronger than all other known forms of finite automata based incompressibility, in particular the notion related to finite automaton based betting systems introduced by Schnorr and Stimm [28]. The paper concludes with a discussion of open questions.

This work was done in part during C. S. Calude’s visits to the Martin-Luther-Universität Halle-Wittenberg in October 2012 and the National University of Singapore in November 2013, and L. Staiger’s visits to the CDMTCS, University of Auckland and the National University of Singapore in March 2013. The work was supported in part by NUS grant R146-000-181-112 (PI F. Stephan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agafonov, V.N.: Normal sequences and finite automata. Soviet Mathematics Doklady 9, 324–325 (1968)

    MATH  Google Scholar 

  2. Ambos-Spies, K., Busse, E.: Automatic forcing and genericity: On the diagonalization strength of finite automata. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 97–108. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Ambos-Spies, K., Busse, E.: Computational aspects of disjunctive sequences. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 711–722. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Berstel, J.: Transductions and Context-free Languages. Teubner (1979)

    Google Scholar 

  5. Bourke, C., Hitchcock, J.M., Vinodchandran, N.V.: Entropy rates and finite-state dimension. Theoretical Computer Science 349(3), 392–406 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buhrman, H., Fortnow, L.: Resource-bounded Kolmogorov complexity revisited. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 105–116. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  7. Calude, C.S.: Information and Randomness. An Algorithmic Perspective, 2nd edn. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  8. Calude, C.S., Hay, N.J., Stephan, F.: Representation of left-computable ε–random reals. Journal of Computer and System Sciences 77, 812–839 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theoretical Computer Science 412, 5668–5677 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Calude, C.S., Salomaa, K., Roblot, T.K.: State-size hierarchy for FS-complexity. International Journal of Foundations of Computer Science 25(1), 37–50 (2012)

    Article  MathSciNet  Google Scholar 

  11. Chaitin, G.J.: A theory of program size formally identical to information theory. Journal of the Association for Computing Machinery 22, 329–340 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  12. Champernowne, D.G.: The construction of decimals normal in the scale of ten. Journal of the London Mathematical Society 8, 254–260 (1933)

    Article  MathSciNet  Google Scholar 

  13. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Rasala, A., Sahai, A., Shelat, A.: Approximating the smallest grammar: Kolmogorov complexity in natural models. In: Proceedings of STOC 2002, pp. 792–801. ACM Press (2002)

    Google Scholar 

  14. de Bruijn, N.: A combinatorial problem. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 49, 758–764 (1946)

    MATH  Google Scholar 

  15. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theoretical Computer Science 310, 1–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Doty, D., Moser, P.: Finite-state dimension and lossy compressors, arxiv:cs/0609096v2 (2006)

    Google Scholar 

  17. Doty, D., Moser, P.: Feasible Depth. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 228–237. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  19. Katseff, H.P.: Complexity dips in random infinite binary sequences. Information and Control 38(3), 258–263 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lehman, E.: Approximation Algorithms for Grammar-based Compression, PhD Thesis. MIT (2002)

    Google Scholar 

  21. Lehman, E., Shelat, A.: Approximation algorithms for grammar-based compression. In: Proceedings of SODA 2002, pp. 205–212. SIAM Press (2002)

    Google Scholar 

  22. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer (2007)

    Google Scholar 

  23. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  24. Martin-Löf, P.: Complexity oscillations in infinite binary sequences. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 19, 225–230 (1971)

    Article  MATH  Google Scholar 

  25. Nies, A.: Computability and Randomness. Clarendon Press, Oxford (2009)

    Book  MATH  Google Scholar 

  26. Nandakumar, S., Vangapelli, S.K.: Normality and finite-state dimension of Liouville numbers, arxiv:1204.4104v1 [cs.IT] (2012)

    Google Scholar 

  27. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theoretical Computer Science 302, 211–222 (2002)

    Article  MathSciNet  Google Scholar 

  28. Schnorr, C.P., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta Informatica 1, 345–359 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schnorr, C.P.: Process complexity and effective randomness tests. Journal of Comput. System Sciences 7, 376–388 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  30. Staiger, L.: The Kolmogorov complexity of real numbers. Theoretical Computer Science 284, 455–466 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tadaki, K.: Phase Transition and Strong Predictability, CDMTCS Research Report 435 (2013)

    Google Scholar 

  32. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press (1993)

    Google Scholar 

  33. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory 24, 530–536 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Calude, C.S., Staiger, L., Stephan, F. (2014). Finite State Incompressible Infinite Sequences. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2014. Lecture Notes in Computer Science, vol 8402. Springer, Cham. https://doi.org/10.1007/978-3-319-06089-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06089-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06088-0

  • Online ISBN: 978-3-319-06089-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics