Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 590 Accesses

Abstract

The generation of novel macromolecular architectures utilizing the concept of supramolecular chemistry has driven synthetic polymer chemistry significantly in the last years [2]. Hydrogen bonding [3, 4], metal complexes [5] and inclusion complexes [6] are widely employed.

ROESY measurements were performed in collaboration with M. Hetzer and Prof. H. Ritter (Heinrich Heine Universität Düsseldorf). Parts of this chapter were reproduced from Schmidt et al. [1] with permission from the Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2012) Miktoarm star polymers via cyclodextrin-driven supramolecular self-assembly. Polym Chem 3:3064–3067. doi:10.1039/C2PY20214J

    Article  CAS  Google Scholar 

  2. Zayed JM, Nouvel N, Rauwald U, Scherman OA (2010) Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water. Chem Soc Rev 39:2806–2816

    Article  CAS  Google Scholar 

  3. Chen S, Bertrand A, Chang X, Alcouffe P, Ladaviére C, Gèrard J-F, Lortie F, Bernard J (2010) Heterocomplementary H-Bonding RAFT agents as tools for the preparation of supramolecular miktoarm star copolymers. Macromolecules 43:5981–5988

    Article  CAS  Google Scholar 

  4. Altintas O, Tunca U, Barner-Kowollik C (2011) Star and miktoarm star block (co)polymers via self-assembly of ATRP generated polymer segments featuring Hamilton wedge and cyanuric acid binding motifs. Polym Chem 2:1146–1155

    Article  CAS  Google Scholar 

  5. Fustin CA, Guillet P, Schubert US, Gohy JF (2007) Metallo-supramolecular block copolymers. Adv Mater 19:1665–1673

    Article  CAS  Google Scholar 

  6. Rauwald U, Scherman O (2008) Supramolecular block copolymers with cucurbit[8]uril in water. Angew Chem Int Ed 47:3950–3953

    Article  CAS  Google Scholar 

  7. Yhaya F, Lim J, Kim Y, Liang M, Gregory AM, Stenzel MH (2011) Development of micellar novel drug carrier utilizing temperature-sensitive block copolymers containing cyclodextrin moieties. Macromolecules 44:8433–8445

    Article  CAS  Google Scholar 

  8. Köllisch HS Barner-Kowollik C, Ritter H (2009) Amphiphilic block copolymers based on cyclodextrin host-guest complexes via RAFT-polymerization in aqueous solution. Chem Commun 1097–1099

    Google Scholar 

  9. Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40:2254–2266

    Article  CAS  Google Scholar 

  10. Zeng J, Shi K, Zhang Y, Sun X, Zhang B (2008) Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun 3753–3755

    Google Scholar 

  11. Liu H, Zhang Y, Hu J, Li C, Liu S (2009) Multi-responsive supramolecular double hydrophilic diblock copolymer driven by host-guest inclusion complexation between beta-cyclodextrin and adamantyl moieties. Macromol Chem Phys 210:2125–2137

    Article  CAS  Google Scholar 

  12. Yan Q, Xin Y, Zhou R, Yin Y, Yuan J (2011) Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chem Commun 47:9594–9596

    Article  CAS  Google Scholar 

  13. Stadermann J, Komber H, Erber M, Däbritz F, Ritter H, Voit B (2011) Diblock copolymer formation via self-assembly of cyclodextrin and adamantyl end-functionalized polymers. Macromolecules 44:3250–3259

    Article  CAS  Google Scholar 

  14. Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y (2010) Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc 132:9268–9270

    Article  CAS  Google Scholar 

  15. Kretschmann O, Choi SW, Miyauchi M, Tomatsu I, Harada A, Ritter H (2006) Switchable hydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrin dimers. Angew Chem Int Ed 45:4361–4365

    Article  Google Scholar 

  16. Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host/guest polymers. Nat Commun 2:511

    Article  Google Scholar 

  17. Zhang Z-X, Liu X, Xu FJ, Loh XJ, Kang E-T, Neoh K-G, Li J (2008) Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core and guest-bearing PEG: controlling thermoresponsivity through supramolecular self-assembly. Macromolecules 41:5967–5970

    Article  CAS  Google Scholar 

  18. Zhang Z-X, Liu KL, Li J (2011) Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules 44:1182–1193

    Article  CAS  Google Scholar 

  19. Zhao Q, Wang S, Cheng X, Yam RCM, Kong D, Li RKY (2010) Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host/guest inclusion complexation. Biomacromolecules 11:1364–1369

    Article  CAS  Google Scholar 

  20. Bertrand A, Stenzel M, Fleury E, Bernard J (2012) Host-guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution. Polym Chem 3:377–383

    Article  CAS  Google Scholar 

  21. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1918

    Article  CAS  Google Scholar 

  22. Bigot J, Charleux B, Cooke G, Delattre F, Fournier D, Lyskawa J, Sambe L, Stoffelbach F, Woisel P (2010) Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): a new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J Am Chem Soc 132:10796–10801

    Article  CAS  Google Scholar 

  23. Li L-Y, He W-D, Li J, Zhang B-Y, Pan T-T, Sun X-L, Ding Z-L (2010) Shell-cross-linked micelles from PNIPAM-b-(PLL)2 Y-shaped miktoarm star copolymer as drug carriers. Biomacromolecules 11:1882–1890

    Article  CAS  Google Scholar 

  24. Sakai F, Chen G, Jiang M (2012) A new story of cyclodextrin as a bulky pendent group causing uncommon behaviour to random copolymers in solution. Polym Chem 3:954–961

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Volkmar Konrad Jakob Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmidt, B.V.K.J. (2014). AB2 Miktoarm Star Polymers. In: Novel Macromolecular Architectures via a Combination of Cyclodextrin Host/Guest Complexation and RAFT Polymerization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06077-4_6

Download citation

Publish with us

Policies and ethics