Skip to main content

Affinity-Mass Spectrometry Approaches for Elucidating Structures and Interactions of Protein–Ligand Complexes

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

Affinity-based approaches in combination with mass spectrometry for molecular structure identification in biological complexes such as protein–protein, and protein–carbohydrate complexes have become popular in recent years. Affinity-mass spectrometry involves immobilization of a biomolecule on a chemically activated support, affinity binding of ligand(s), dissociation of the complex, and mass spectrometric analysis of the bound fraction. In this chapter the affinity-mass spectrometric methodologies will be presented for (1) identification of the epitope structures in the Abeta amyloid peptide, (2) identification of oxidative modifications in proteins such as nitration of tyrosine, (3) determination of carbohydrate recognition domains, and as (4) development of a biosensor chip-based mass spectrometric system for concomitant quantification and identification of protein–ligand complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8:3222–3238

    Article  CAS  Google Scholar 

  2. Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem 85:1394–1401

    Article  CAS  Google Scholar 

  3. Cummings RD, Liu FT (2009) Galectins (Chapter 33). In: Varki A, Cummings RD, Esko JD et al (eds) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. http://www.ncbi.nlm.nih.gov/books/NBK1944/

  4. Dragusanu M, Petre BA, Przybylski M (2011) Epitope motif of an anti-nitrotyrosine antibody specific for tyrosine-nitrated peptides revealed by a combination of affinity approaches and mass spectrometry. J Pept Sci 17(3):184–191

    Article  CAS  Google Scholar 

  5. Dragusanu M, Petre BA, Slamnoiu S, Vlad C, Tu T, Przybylski M (2010) On-line bioaffinity-electrospray mass spectrometry for simultaneous detection, identification, and quantification of protein-ligand interactions. J Am Soc Mass Spectrom 21:1643–1648

    Article  CAS  Google Scholar 

  6. Gabius HJ (1990) Influence of type of linkage and spacer on the interaction of beta-galactoside-binding proteins with immobilized affinity ligands. Anal Biochem 189:91–94

    Article  CAS  Google Scholar 

  7. Garcia-Monzon C, Majano PL, Zubia I, Sanz P, Apolinario A, Moreno-Otero R (2000) Intrahepatic accumulation of nitrotyrosine in chronic viral hepatitis is associated with histological severity of liver disease. J Hepatol 32:331–338

    Article  CAS  Google Scholar 

  8. Gokulrangan G, Zaidi A, Michaelis ML, Schoneich C (2007) Proteomic analysis of protein nitration in rat cerebellum: effect of biological aging. J Neurochem 100:1494–1504

    CAS  Google Scholar 

  9. Hager-Braun C, Hochleitner EO, Gorny MK, Zolla-Pazner S, Bienstock RJ, Tomer KB (2010) Characterization of a discontinuous epitope of the HIV envelope protein gp120 recognized by a human monoclonal antibody using chemical modification and mass spectrometric analysis. J Am Soc Mass Spectrom 21:1687–1698

    Article  CAS  Google Scholar 

  10. Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, USA, pp 53–224

    Google Scholar 

  11. Hearty S, Leonard P, O’Kennedy R (2012) Measuring antibody-antigen binding kinetics using surface plasmon resonance. Methods Mol Biol 907:411–442

    Article  CAS  Google Scholar 

  12. Heijnen HF, van Donselaar E, Slot JW, Fries DM, Blachard-Fillion B, Hodara R, Lightfoot R, Polydoro M, Spielberg D, Thomson L, Regan EA, Crapo J, Ischiropoulos H (2006) Subcellular localization of tyrosine-nitrated proteins is dictated by reactive oxygen species generating enzymes and by proximity to nitric oxide synthase. Free Radic Biol Med 40:1903–1913

    Article  CAS  Google Scholar 

  13. Hinson JA, Michael SL, Ault SG, Pumford NR (2000) Western blot analysis for nitrotyrosine protein adducts in livers of saline-treated and acetaminophen-treated mice. Toxicol Sci 53:467–473

    Article  CAS  Google Scholar 

  14. Iacob RE (2004) Molecular recognition structures and antibody affinities of pathophysiological degradation products of Alzheimer’s amyloid precursor protein elucidated by high resolution mass spectrometry. Konstanz University, Germany. ISBN 973-8076-85-4

    Google Scholar 

  15. Ino Y, Hirano H (2011) Mass spectrometric characterization of proteins transferred from polyacrylamide gels to membrane filters. FEBS J 278:3807–3814

    Article  CAS  Google Scholar 

  16. Juszczyk P, Paraschiv G, Szymanska A, Kolodziejczyk AS, Rodziewicz-Motowidlo S, Grzonka Z, Przybylski M (2009) Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin C with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. J Med Chem 52:2420–2428

    Article  CAS  Google Scholar 

  17. Khan J, Brennand DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M (1998) 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method. Biochem J 330(Pt 2):795–801

    CAS  Google Scholar 

  18. Lange K, Bender F, Voigt A, Gao H, Rappt M (2003) A surface acoustic wave biosensor concept with low flow cell volumes for label-free detection. Anal Chem 75:5561–5566

    Article  Google Scholar 

  19. Lopez-Lucendo MF, Solis D, Andre S, Hirabayashi J, Kasai K, Kaltner H, Gabius HJ, Romero A (2004) Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol 343:957–970

    Article  CAS  Google Scholar 

  20. Luhrs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Dobeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A 102:17342–17347

    Article  CAS  Google Scholar 

  21. Luque-Garcia JL, Zhou G, Spellman DS, Sun TT, Neubert TA (2008) Analysis of electroblotted proteins by mass spectrometry: protein identification after Western blotting. Mol Cell Proteomics 7:308–314

    Article  CAS  Google Scholar 

  22. Macht M, Marquardt A, Deininger SO, Damoc E, Kohlmann M, Przybylski M (2004) “Affinity-proteomics”: direct protein identification from biological material using mass spectrometric epitope mapping. Anal Bioanal Chem 378:1102–1111

    Article  CAS  Google Scholar 

  23. Maftei M, Thurm F, Leirer VM, von Arnim CA, Elbert T, Przybylski M, Kolassa IT, Manea M (2012) Antigen-bound and free beta-amyloid autoantibodies in serum of healthy adults. PLoS One 7:e44516

    Article  CAS  Google Scholar 

  24. Maftei M, Tian X, Manea M, Exner TE, Schwanzar D, von Arnim CA, Przybylski M (2012) Interaction structure of the complex between neuroprotective factor humanin and Alzheimer’s beta-amyloid peptide revealed by affinity mass spectrometry and molecular modeling. J Pept Sci 18:373–382

    Article  CAS  Google Scholar 

  25. Manea M, Mezo G, Hudecz F, Przybylski M (2004) Polypeptide conjugates comprising a beta-amyloid plaque-specific epitope as new vaccine structures against Alzheimer’s disease. Biopolymers 76:503–511

    Article  CAS  Google Scholar 

  26. Maurer T (2005) NMR studies of protein-ligand interactions. Methods Mol Biol 305:197–214

    CAS  Google Scholar 

  27. McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, French JE, Lambermon MH, Darabie AA, Brown ME, Janus C, Chishti MA, Horne P, Westaway D, Fraser PE, Mount HT, Przybylski M, St George-Hyslop P (2002) Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4-10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8:1263–1269

    Article  CAS  Google Scholar 

  28. Mohan CG, Boix E, Evans HR, Nikolovski Z, Nogues MV, Cuchillo CM, Acharya KR (2002) The crystal structure of eosinophil cationic protein in complex with 2′,5′-ADP at 2.0 A resolution reveals the details of the ribonucleolytic active site. Biochemistry 41:12100–12106

    Article  CAS  Google Scholar 

  29. Moise A, Andre S, Eggers F, Krzeminski M, Przybylski M, Gabius HJ (2011) Toward bioinspired galectin mimetics: identification of ligand-contacting peptides by proteolytic-excision mass spectrometry. J Am Chem Soc 133:14844–14847

    Article  CAS  Google Scholar 

  30. Morgan D (2006) Immunotherapy for Alzheimer’s disease. J Alzheimers Dis 9:425–432

    CAS  Google Scholar 

  31. Morrill PR, Millington RB, Lowe CR (2003) Imaging surface plasmon resonance system for screening affinity ligands. J Chromatogr B Analyt Technol Biomed Life Sci 793:229–251

    Article  CAS  Google Scholar 

  32. Novelli F, Allione A, Wells V, Forni G, Mallucci L (1999) Negative cell cycle control of human T cells by beta-galactoside binding protein (beta GBP): induction of programmed cell death in leukaemic cells. J Cell Physiol 178:102–108

    Article  CAS  Google Scholar 

  33. Papac DI, Hoyes J, Tomer KB (1994) Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry. Protein Sci 3:1485–1492

    Article  CAS  Google Scholar 

  34. Paraschiv G, Vincke C, Czaplewska P, Manea M, Muyldermans S, Przybylski M (2013) Epitope structure and binding affinity of single chain llama anti-beta-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry. J Mol Recognit 26:1–9

    Article  CAS  Google Scholar 

  35. Petre BA (2008) Analytical development and biochemical application of mass spectrometry in combination with immunoaffinity methods for identification and structural characterisation of protein nitration. Dissertation at http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-85026.

  36. Petre BA, Dragusanu M, Przybylski M (2008) Molecular recognition specificity of anti-3-nitrotyrosine antibodies revealed by affinity-mass spectrometry and immunoanalytical methods. In: Popescu C, Zamfir AD, Dinca N (eds) Applications of mass spectrometry in life sciences. Springer, Netherlands. ISBN 978-1-4020-8811-7

    Google Scholar 

  37. Petre BA, Ulrich M, Stumbaum M, Bernevic B, Moise A, Doring G, Przybylski M (2012) When is mass spectrometry combined with affinity approaches essential? A case study of tyrosine nitration in proteins. J Am Soc Mass Spectrom 23:1831–1840

    Article  CAS  Google Scholar 

  38. Petre BA, Youhnovski N, Lukkari J, Weber R, Przybylski M (2005) Structural characterisation of tyrosine-nitrated peptides by ultraviolet and infrared matrix-assisted laser desorption/ionisation Fourier transform ion cyclotron resonance mass spectrometry. Eur J Mass Spectrom (Chichester, Eng) 11:513–518

    Article  CAS  Google Scholar 

  39. Przybylski M et al (2007) Molecular approaches for immunotherapy and diagnostics of Alzheimer’s disease based on epitope-specific beta-amyloid-antibodies. Eur., US & PCT Patent application

    Google Scholar 

  40. Rocha-Gaso MI, March-Iborra C, Montoya-Baides A, Arnau-Vives A (2009) Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors (Basel) 9:5740–5769

    Article  CAS  Google Scholar 

  41. Shimamoto G, Gegg C, Boone T, Queva C (2012) Peptibodies: a flexible alternative format to antibodies. MAbs 4:586–591

    Article  Google Scholar 

  42. Stefanescu R, Iacob RE, Damoc EN, Marquardt A, Amstalden E, Manea M, Perdivara I, Maftei M, Paraschiv G, Przybylski M (2007) Mass spectrometric approaches for elucidation of antigenantibody recognition structures in molecular immunology. Eur J Mass Spectrom (Chichester, Eng) 13:69–75

    Article  CAS  Google Scholar 

  43. Suckau D, Kohl J, Karwath G, Schneider K, Casaretto M, Bitter-Suermann D, Przybylski M (1990) Molecular epitope identification by limited proteolysis of an immobilized antigen-antibody complex and mass spectrometric peptide mapping. Proc Natl Acad Sci U S A 87:9848–9852

    Article  CAS  Google Scholar 

  44. Tabb DL (2012) Evaluating protein interactions through cross-linking mass spectrometry. Nat Methods 9:879–881

    Article  CAS  Google Scholar 

  45. Taylor CR, Levenson RM (2006) Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment II. Histopathology 49:411–424

    Article  CAS  Google Scholar 

  46. Tian X, Cecal R, McLaurin J, Manea M, Stefanescu R, Grau S, Harnasch M, Amir S, Ehrmann M, St George-Hyslop P, Kohlmann M, Przybylski M (2005) Identification and structural characterisation of carboxy-terminal polypeptides and antibody epitopes of Alzheimer’s amyloid precursor protein using high-resolution mass spectrometry. Eur J Mass Spectrom (Chichester, Eng) 11:547–556

    Article  CAS  Google Scholar 

  47. Ulrich M, Petre A, Youhnovski N, Promm F, Schirle M, Schumm M, Pero RS, Doyle A, Checkel J, Kita H, Thiyagarajan N, Acharya KR, Schmid-Grendelmeier P, Simon HU, Schwarz H, Tsutsui M, Shimokawa H, Bellon G, Lee JJ, Przybylski M, Doring G (2008) Post-translational tyrosine nitration of eosinophil granule toxins mediated by eosinophil peroxidase. J Biol Chem 283:28629–28640

    Article  CAS  Google Scholar 

  48. van den Brule FA, Buicu C, Baldet M, Sobel ME, Cooper DN, Marschal P, Castronovo V (1995) Galectin-1 modulates human melanoma cell adhesion to laminin. Biochem Biophys Res Commun 209:760–767

    Article  Google Scholar 

  49. van Sommeren APG, Machielsen PAGM, Gribnau TCJ (1993) Comparison of three activated agaroses for use in affinity chromatography: effects on coupling performance and ligand leakage. J Chromatogr A 639:23–31

    Article  Google Scholar 

  50. Vespa GN, Lewis LA, Kozak KR, Moran M, Nguyen JT, Baum LG, Miceli MC (1999) Galectin-1 specifically modulates TCR signals to enhance TCR apoptosis but inhibit IL-2 production and proliferation. J Immunol 162:799–806

    CAS  Google Scholar 

  51. Vyakarnam A, Dagher SF, Wang JL, Patterson RJ (1997) Evidence for a role for galectin-1 in pre-mRNA splicing. Mol Cell Biol 17:4730–4737

    CAS  Google Scholar 

  52. Williams MA, Daviter T (2013) Protein-ligand interactions, 2nd edn. Humana, New York. ISBN 978-1-62703-397-8

    Book  Google Scholar 

  53. Yamaoka A, Kuwabara I, Frigeri LG, Liu FT (1995) A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils. J Immunol 154:3479–3487

    CAS  Google Scholar 

  54. Yu L, Xiao G, Zhang J, Remmele RL Jr, Eu M, Liu D (2012) Identification and quantification of Fc fusion peptibody degradations by limited proteolysis method. Anal Biochem 428:137–142

    Article  CAS  Google Scholar 

  55. Zhao Y, Jensen ON (2009) Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9:4632–4641

    Article  CAS  Google Scholar 

  56. Zhao Y, Muir TW, Kent SB, Tischer E, Scardina JM, Chait BT (1996) Mapping protein-protein interactions by affinity-directed mass spectrometry. Proc Natl Acad Sci U S A 93:4020–4024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Professor Michael Przybylski, Dr. Mihaela Stumbaum, Dr. Roxana Iacob, Dr. Irina Perdivara, Dr. Marilena Manea, and Adrian Moise for interesting topic, useful discussions, and expertise. Our research was supported in part by the Deutsche Forschungsgemeinschaft, Bonn, Germany (PR-175-14-1 and FG-753), EC for the GlycoHIT consortium, German Academic Exchange Service (DAAD), and the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-RU-TE-2011-3-0038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brînduşa Alina Petre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petre, B.A. (2014). Affinity-Mass Spectrometry Approaches for Elucidating Structures and Interactions of Protein–Ligand Complexes. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_7

Download citation

Publish with us

Policies and ethics