Skip to main content

Biomarkers in Major Depressive Disorder: The Role of Mass Spectrometry

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

Major depressive disorder (MDD) is common. Despite numerous available treatments, many individuals fail to improve clinically. MDD continues to be diagnosed exclusively via behavioral rather than biological methods. Biomarkers—which include measurements of genes, proteins, and patterns of brain activity—may provide an important objective tool for the diagnosis of MDD or in the rational selection of treatments. Proteomic analysis and validation of its results as biomarkers is less explored than other areas of biomarker research in MDD. Mass spectrometry (MS) is a comprehensive, unbiased means of proteomic analysis, which can be complemented by directed protein measurements, such as Western Blotting. Prior studies have focused on MS analysis of several human biomaterials in MDD, including human post-mortem brain, cerebrospinal fluid (CSF), blood components, and urine. Further studies utilizing MS and proteomic analysis in MDD may help solidify and establish biomarkers for use in diagnosis, identification of new treatment targets, and understanding of the disorder. The ultimate goal is the validation of a biomarker or a biomarker signature that facilitates a convenient and inexpensive predictive test for depression treatment response and helps clinicians in the rational selection of next-step treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kessler RC, Petukhova M, Sampson NA, Zaslavsky AM, Wittchen HU (2012) Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res 21:169–184

    Article  Google Scholar 

  2. To SE, Zepf RA, Woods AG (2005) The symptoms, neurobiology, and current pharmacological treatment of depression. J Neurosci Nurs 37:102–107

    Article  Google Scholar 

  3. APA (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Association, Arlington, VA

    Google Scholar 

  4. Woods AG (2004) Understanding depression and diabetes. Diabetes Self Manag 21:6, 8, 11–12

    Google Scholar 

  5. Strine TW, Mokdad AH, Balluz LS, Gonzalez O, Crider R, Berry JT et al (2008) Depression and anxiety in the United States: findings from the 2006 Behavioral Risk Factor Surveillance System. Psychiatr Serv 59:1383–1390

    Article  Google Scholar 

  6. Niranjan A, Corujo A, Ziegelstein RC, Nwulia E (2012) Depression and heart disease in US adults. Gen Hosp Psychiatry 34:254–261

    Article  Google Scholar 

  7. Mathew CS, Dominic M, Isaac R, Jacob JJ (2012) Prevalence of depression in consecutive patients with type 2 diabetes mellitus of 5-year duration and its impact on glycemic control. Indian J Endocrinol Metab 16:764–768

    Article  Google Scholar 

  8. Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:617–627

    Article  Google Scholar 

  9. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR et al (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095–3105

    Article  Google Scholar 

  10. Chapman D, Perry G, Strine T (2005) The vital link between chronic disease and depressive disorders. Prev Chronic Dis 2:A14

    Google Scholar 

  11. Shim RS, Baltrus P, Ye J, Rust G (2011) Prevalence, treatment, and control of depressive symptoms in the United States: results from the National Health and Nutrition Examination Survey (NHANES), 2005–2008. J Am Board Fam Med 24:33–38

    Article  Google Scholar 

  12. Stewart WF, Ricci JA, Chee E, Hahn SR, Morganstein D (2003) Cost of lost productive work time among US workers with depression. JAMA 289:3135–3144

    Article  Google Scholar 

  13. Wang PS, Lane M, Olfson M, Pincus HA, Wells KB, Kessler RC (2005) Twelve-month use of mental health services in the United States: results from the National Comorbidity Survey Replication. Arch Gen Psychiatry 62:629–640

    Article  Google Scholar 

  14. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D et al (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163:1905–1917

    Article  Google Scholar 

  15. Trivedi MH, Rush AJ, Wisniewski SR, Warden D, McKinney W, Downing M et al (2006) Factors associated with health-related quality of life among outpatients with major depressive disorder: a STAR*D report. J Clin Psychiatry 67:185–195

    Article  Google Scholar 

  16. Trivedi MH, Fava M, Wisniewski SR, Thase ME, Quitkin F, Warden D et al (2006) Medication augmentation after the failure of SSRIs for depression. N Engl J Med 354:1243–1252

    Article  CAS  Google Scholar 

  17. Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME et al (2006) Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med 354:1231–1242

    Article  CAS  Google Scholar 

  18. Woods AG (2008) Give a man a fish. Essential fatty acids in health and disease. Diabetes Self Manag 25:8, 11–12, 14

    Google Scholar 

  19. Roth R (2012) Lisdexamfetamine dimesylate augmentation for executive dysfunction in adults with fully or partially remitted major depressive disorder. In: The 165th annual meeting of the American Psychiatric Association, Philadelphia, PA

    Google Scholar 

  20. Piet J, Hougaard E (2011) The effect of mindfulness-based cognitive therapy for prevention of relapse in recurrent major depressive disorder: a systematic review and meta-analysis. Clin Psychol Rev 31:1032–1040

    Article  Google Scholar 

  21. Pehrson AL, Sanchez C (2013) Serotonergic modulation of glutamate neurotransmission as a strategy for treating depression and cognitive dysfunction. CNS Spectr 19(2):121–133

    Google Scholar 

  22. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CM, Perez AM et al (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142

    Article  Google Scholar 

  23. Mantione E, Micheloni S, Alcaino C, New K, Mazzaferro S, Bermudez I (2012) Allosteric modulators of alpha4beta2 nicotinic acetylcholine receptors: a new direction for antidepressant drug discovery. Future Med Chem 4:2217–2230

    Article  CAS  Google Scholar 

  24. Keefe R (2012) Lisdexamfetamine dimesylate in the treatment of cognitive dysfunction in patients with partially or fully remitted major depressive disorder. In: 165th annual meeting of the American Psychiatric Association, Philadelphia, PA

    Google Scholar 

  25. Celada P, Bortolozzi A, Artigas F (2013) Serotonin 5-HT1A receptors as targets for agents to treat psychiatric disorders: rationale and current status of research. CNS Drugs 27:703–716

    Article  CAS  Google Scholar 

  26. Martins-De-Souza D, Wobrock T, Zerr I, Schmitt A, Gawinecka J, Schneider-Axmann T et al (2010) Different apolipoprotein E, apolipoprotein A1 and prostaglandin-H2 D-isomerase levels in cerebrospinal fluid of schizophrenia patients and healthy controls. World J Biol Psychiatry 11:719–728

    Article  Google Scholar 

  27. Pallis AG, Fennell DA, Szutowicz E, Leighl NB, Greillier L, Dziadziuszko R (2011) Biomarkers of clinical benefit for anti-epidermal growth factor receptor agents in patients with non-small-cell lung cancer. Br J Cancer 105:1–8

    Article  CAS  Google Scholar 

  28. Phillips KA, Marshall DA, Haas JS, Elkin EB, Liang SY, Hassett MJ et al (2009) Clinical practice patterns and cost effectiveness of human epidermal growth receptor 2 testing strategies in breast cancer patients. Cancer 115:5166–5174

    Article  Google Scholar 

  29. Ross JS (2011) Biomarker-based selection of therapy for colorectal cancer. Biomark Med 5:319–332

    Article  CAS  Google Scholar 

  30. Lakhan SE, Vieira K, Hamlat E (2010) Biomarkers in psychiatry: drawbacks and potential for misuse. Int Arch Med 3:1

    Article  Google Scholar 

  31. Singh I, Rose N (2009) Biomarkers in psychiatry. Nature 460:202–207

    Article  CAS  Google Scholar 

  32. Woods AG, Sokolowska I, Taurines R, Gerlach M, Dudley E, Thome J et al (2012) Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 16:1184–1195

    Article  CAS  Google Scholar 

  33. Cook IA, Hunter AM, Gilmer WS, Iosifescu DV, Zisook S, Burgoyne KS et al (2013) Quantitative electroencephalogram biomarkers for predicting likelihood and speed of achieving sustained remission in major depression: a report from the biomarkers for rapid identification of treatment effectiveness in major depression (BRITE-MD) trial. J Clin Psychiatry 74:51–56

    Article  CAS  Google Scholar 

  34. Greenblatt JM, Sussman C, Jameson M, Yuan L, Hoffman DA, Iosifescu DV (2011) Retrospective chart review of a referenced EEG database in assisting medication selection for treatment of depression in patients with eating disorders. Neuropsychiatr Dis Treat 7:529–541

    Article  Google Scholar 

  35. Iosifescu DV (2011) Electroencephalography-derived biomarkers of antidepressant response. Harv Rev Psychiatry 19:144–154

    Article  Google Scholar 

  36. Hoogenboom WS, Perlis RH, Smoller JW, Zeng-Treitler Q, Gainer VS, Murphy SN et al (2014) Limbic system white matter microstructure and long-term treatment outcome in major depressive disorder: a diffusion tensor imaging study using legacy data. World J Biol Psychiatry 15:122–134

    Article  Google Scholar 

  37. Blood AJ, Iosifescu DV, Makris N, Perlis RH, Kennedy DN, Dougherty DD et al (2010) Microstructural abnormalities in subcortical reward circuitry of subjects with major depressive disorder. PLoS One 5:e13945

    Article  CAS  Google Scholar 

  38. Barnett JH, Smoller JW (2009) The genetics of bipolar disorder. Neuroscience 164: 331–343

    Article  CAS  Google Scholar 

  39. Kvajo M, McKellar H, Gogos JA (2010) Molecules, signaling, and schizophrenia. Curr Top Behav Neurosci 4:629–656

    Article  Google Scholar 

  40. Poelmans G, Pauls DL, Buitelaar JK, Franke B (2011) Integrated genome-wide association study findings: identification of a neurodevelopmental network for attention deficit hyperactivity disorder. Am J Psychiatry 168:365–377

    Article  Google Scholar 

  41. Weber H, Kittel-Schneider S, Gessner A, Domschke K, Neuner M, Jacob CP et al (2011) Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD. Neuropsychopharmacology 36:2076–2085

    Article  Google Scholar 

  42. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE (2010) Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 167:509–527

    Article  Google Scholar 

  43. Kolassa IT, Kolassa S, Ertl V, Papassotiropoulos A, De Quervain DJ (2010) The risk of posttraumatic stress disorder after trauma depends on traumatic load and the catechol-o-methyltransferase Val(158)Met polymorphism. Biol Psychiatry 67:304–308

    Article  CAS  Google Scholar 

  44. Lahey BB, Rathouz PJ, Lee SS, Chronis-Tuscano A, Pelham WE, Waldman ID et al (2011) Interactions between early parenting and a polymorphism of the child’s dopamine transporter gene in predicting future child conduct disorder symptoms. J Abnorm Psychol 120:33–45

    Article  Google Scholar 

  45. Roy A, Sarchiopone M, Carli V (2009) Gene-environment interaction and suicidal behavior. J Psychiatr Pract 15:282–288

    Article  Google Scholar 

  46. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM et al (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 18:497–511

    Article  CAS  Google Scholar 

  47. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537

    Article  CAS  Google Scholar 

  48. Junaid MA, Pullarkat RK (2001) Proteomic approach for the elucidation of biological defects in autism. J Autism Dev Disord 31:557–560

    Article  CAS  Google Scholar 

  49. Ngounou Wetie AG, Sokolowska I, Wormwood K, Michel TM, Thome J, Darie CC et al (2013) Mass spectrometry for the detection of potential psychiatric biomarkers. J Mol Psychiatry 1:8

    Article  Google Scholar 

  50. Woods AG, Ngounou Wetie AG, Sokolowska I, Russell S, Ryan JP, Michel TM et al (2013) Mass spectrometry as a tool for studying autism spectrum disorder. J Mol Psychiatry 1:6

    Article  Google Scholar 

  51. Darie C (2013) Investigation of protein-protein interactions by blue native-PAGE & mass spectrometry. Mod Chem Appl 1:e111

    Google Scholar 

  52. Darie CC, Biniossek ML, Gawinowicz MA, Milgrom Y, Thumfart JO, Jovine L et al (2005) Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. J Biol Chem 280:37585–37598

    Article  CAS  Google Scholar 

  53. Darie CC, Biniossek ML, Jovine L, Litscher ES, Wassarman PM (2004) Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry 43:7459–7478

    Article  CAS  Google Scholar 

  54. Darie CC, Biniossek ML, Winter V, Mutschler B, Haehnel W (2005) Isolation and structural characterization of the Ndh complex from mesophyll and bundle sheath chloroplasts of Zea mays. FEBS J 272:2705–2716

    Article  CAS  Google Scholar 

  55. Darie CC, Deinhardt K, Zhang G, Cardasis HS, Chao MV, Neubert TA (2011) Identifying transient protein-protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. Proteomics 11:4514–4528

    Article  CAS  Google Scholar 

  56. Darie CC, Janssen WG, Litscher ES, Wassarman PM (2008) Purified trout egg vitelline envelope proteins VEbeta and VEgamma polymerize into homomeric fibrils from dimers in vitro. Biochim Biophys Acta 1784:385–392

    Article  CAS  Google Scholar 

  57. Darie CC, Litscher ES, Wassarman PM (2008) Structure, processing, and polymerization of rainbow trout egg vitelline envelope proteins. Nato Scie Peace Secu 23–36

    Google Scholar 

  58. Darie CC, Shetty V, Spellman DS, Zhang GJ, Xu CF, Cardasis HL et al (2008) Blue native page and mass spectrometry analysis of ephrin stimulation-dependent protein-protein interactions in Ng108-Ephb2 cells. Nato Scie Peace Secu 3–22

    Google Scholar 

  59. Ngounou Wetie AG, Sokolowska I, Woods AG, Darie CC (2013) Identification of post-translational modifications by mass spectrometry. Aust J Chem 66:734–748

    Article  Google Scholar 

  60. Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Deinhardt K, Darie CC (2014) Protein-protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell Mol Life Sci 71:205–228

    Article  CAS  Google Scholar 

  61. Ngounou Wetie AG, Sokolowska I, Woods AG, Roy U, Loo JA, Darie CC (2013) Investigation of stable and transient protein-protein interactions: past, present, and future. Proteomics 13:538–557

    Article  CAS  Google Scholar 

  62. Ngounou Wetie AG, Sokolowska I, Woods AG, Wormwood KL, Dao S, Patel S et al (2013) Automated mass spectrometry-based functional assay for the routine analysis of the secretome. J Lab Autom 18:19–29

    Article  CAS  Google Scholar 

  63. Sokolowska I, Dorobantu C, Woods AG, Macovei A, Branza-Nichita N, Darie CC (2012) Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Sci 10:47

    Article  CAS  Google Scholar 

  64. Sokolowska I, Gawinowicz MA, Ngounou Wetie AG, Darie CC (2012) Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis 33:2527–2536

    Article  CAS  Google Scholar 

  65. Sokolowska I, Ngounou Wetie AG, Roy U, Woods AG, Darie CC (1834) Mass spectrometry investigation of glycosylation on the NXS/T sites in recombinant glycoproteins. Biochim Biophys Acta 2013:1474–1483

    Google Scholar 

  66. Sokolowska I, Ngounou Wetie AG, Woods AG, Darie CC (2012) Automatic determination of disulfide bridges in proteins. J Lab Autom 17:408–416

    CAS  Google Scholar 

  67. Sokolowska I, Ngounou Wetie AG, Woods AG, Darie CC (2013) Applications of mass spectrometry in proteomics. Aust J Chem 66:721–733

    Article  CAS  Google Scholar 

  68. Sokolowska I, Ngounou Wetie AG, Wormwood K, Michel TM, Thome J, Darie CC et al (2013) The potential of biomarkers in psychiatry: focus on proteomics. J Neural Transm. [Epub ahead of print]

    Google Scholar 

  69. Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC (2012) Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells. J Biol Chem 287:1719–1733

    Article  CAS  Google Scholar 

  70. Sokolowska I, Woods AG, Gawinowicz MA, Roy U, Darie CC (2013) Characterization of tumor differentiation factor (TDF) and its receptor (TDF-R). Cell Mol Life Sci 70:2835–2848

    Article  CAS  Google Scholar 

  71. Sokolowska I, Woods AG, Wagner J, Dorler J, Wormwood K, Thome J et al (2011) Mass spectrometry for proteomics-based investigation of oxidative stress and heat shock proteins. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC

    Google Scholar 

  72. Woods AG, Sokolowska I, Deinhardt K, Sandu C, Darie CC (2013) Identification of tumor differentiation factor (TDF) in select CNS neurons. Brain Struct Funct. [Epub ahead of print]

    Google Scholar 

  73. Woods AG, Sokolowska I, Yakubu R, Butkiewicz M, LaFleur M, Talbot C et al (2011) Blue native page and mass spectrometry as an approach for the investigation of stable and transient protein-protein interactions. In: Andreescu S, Hepel M (eds) Oxidative stress: diagnostics, prevention, and therapy. American Chemical Society, Washington, DC

    Google Scholar 

  74. Roy U, Sokolowska I, Woods AG, Darie CC (2012) Structural investigation of tumor differentiation factor. Biotechnol Appl Biochem 59:445–450

    Article  CAS  Google Scholar 

  75. Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN et al (2011) Proteomic research in psychiatry. J Psychopharmacol 25:151–196

    Article  CAS  Google Scholar 

  76. Haile CN, Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Foulkes A et al (2014) Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol 17(2):331–336

    Google Scholar 

  77. Kazuno AA, Ohtawa K, Otsuki K, Usui M, Sugawara H, Okazaki Y et al (2013) Proteomic analysis of lymphoblastoid cells derived from monozygotic twins discordant for bipolar disorder: a preliminary study. PLoS One 8:e53855

    Article  CAS  Google Scholar 

  78. Woods AG, Poulsen FR, Gall CM (1999) Dexamethasone selectively suppresses microglial trophic responses to hippocampal deafferentation. Neuroscience 91:1277–1289

    Article  CAS  Google Scholar 

  79. Woods AG, Guthrie KM, Kurlawalla MA, Gall CM (1998) Deafferentation-induced increases in hippocampal insulin-like growth factor-1 messenger RNA expression are severely attenuated in middle aged and aged rats. Neuroscience 83:663–668

    Article  CAS  Google Scholar 

  80. Schneider B, Prvulovic D (2013) Novel biomarkers in major depression. Curr Opin Psychiatry 26:47–53

    Article  Google Scholar 

  81. Yoshida T, Ishikawa M, Niitsu T, Nakazato M, Watanabe H, Shiraishi T et al (2012) Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One 7:e42676

    Article  CAS  Google Scholar 

  82. Kotan Z, Sarandol E, Kirhan E, Ozkaya G, Kirli S (2012) Serum brain-derived neurotrophic factor, vascular endothelial growth factor and leptin levels in patients with a diagnosis of severe major depressive disorder with melancholic features. Ther Adv Psychopharmacol 2:65–74

    Article  CAS  Google Scholar 

  83. Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Kenis G, Prickaerts J et al (2011) Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry 16:1088–1095

    Article  CAS  Google Scholar 

  84. Huang TL, Lee CT, Liu YL (2008) Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J Psychiatr Res 42:521–525

    Article  Google Scholar 

  85. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148

    Article  CAS  Google Scholar 

  86. Carlson PJ, Diazgranados N, Nugent AC, Ibrahim L, Luckenbaugh DA, Brutsche N et al (2013) Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: a preliminary positron emission tomography study. Biol Psychiatry 73:1213–1221

    Article  CAS  Google Scholar 

  87. Harmer CJ, Cowen PJ (2013) ‘It’s the way that you look at it’—a cognitive neuropsychological account of SSRI action in depression. Philos Trans R Soc Lond B Biol Sci 368:20120407

    Article  Google Scholar 

  88. Mu J, Xie P, Yang ZS, Yang DL, Lv FJ, Luo TY et al (2007) Neurogenesis and major depression: implications from proteomic analyses of hippocampal proteins in a rat depression model. Neurosci Lett 416:252–256

    Article  CAS  Google Scholar 

  89. Posener JA, Wang L, Price JL, Gado MH, Province MA, Miller MI et al (2003) High-dimensional mapping of the hippocampus in depression. Am J Psychiatry 160:83–89

    Article  Google Scholar 

  90. Henningsen K, Palmfeldt J, Christiansen S, Baiges I, Bak S, Jensen ON et al (2012) Candidate hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression. Mol Cell Proteomics 11:M111.016428

    Article  Google Scholar 

  91. Alawam K, Dudley E, Donev R, Thome J (2012) Protein and peptide profiling as a tool for biomarker discovery in depression. Electrophoresis 33:3830–3834

    Article  CAS  Google Scholar 

  92. Kekesi KA, Juhasz G, Simor A, Gulyassy P, Szego EM, Hunyadi-Gulyas E et al (2012) Altered functional protein networks in the prefrontal cortex and amygdala of victims of suicide. PLoS One 7:e50532

    Article  CAS  Google Scholar 

  93. Martins-de-Souza D, Guest PC, Harris LW, Vanattou-Saifoudine N, Webster MJ, Rahmoune H et al (2012) Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl Psychiatry 2:e87

    Article  CAS  Google Scholar 

  94. Ditzen C, Tang N, Jastorff AM, Teplytska L, Yassouridis A, Maccarrone G et al (2012) Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology 37:1013–1025

    Article  CAS  Google Scholar 

  95. Xu HB, Zhang RF, Luo D, Zhou Y, Wang Y, Fang L et al (2012) Comparative proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid metabolism and immunoregulation. Int J Neuropsychopharmacol 15:1413–1425

    Article  CAS  Google Scholar 

  96. Nichkova MI, Huisman H, Wynveen PM, Marc DT, Olson KL, Kellermann GH (2012) Evaluation of a novel ELISA for serotonin: urinary serotonin as a potential biomarker for depression. Anal Bioanal Chem 402:1593–1600

    Article  CAS  Google Scholar 

  97. Hu S, Li Y, Wang J, Xie Y, Tjon K, Wolinsky L et al (2006) Human saliva proteome and transcriptome. J Dent Res 85:1129–1133

    Article  CAS  Google Scholar 

  98. Shi M, Sui YT, Peskind ER, Li G, Hwang H, Devic I et al (2011) Salivary tau species are potential biomarkers of Alzheimer’s disease. J Alzheimers Dis 27:299–305

    CAS  Google Scholar 

  99. Castagnola M, Messana I, Inzitari R, Fanali C, Cabras T, Morelli A et al (2008) Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders. J Proteome Res 7:5327–5332

    Article  CAS  Google Scholar 

  100. Grynderup MB, Kolstad HA, Mikkelsen S, Andersen JH, Bonde JP, Buttenschon HN et al (2013) A two-year follow-up study of salivary cortisol concentration and the risk of depression. Psychoneuroendocrinology 38:2042–2050

    Article  CAS  Google Scholar 

  101. Xu HB, Fang L, Hu ZC, Chen YC, Chen JJ, Li FF et al (2012) Potential clinical utility of plasma amino acid profiling in the detection of major depressive disorder. Psychiatry Res 200:1054–1057

    Article  CAS  Google Scholar 

  102. Zheng P, Gao HC, Li Q, Shao WH, Zhang ML, Cheng K et al (2012) Plasma metabonomics as a novel diagnostic approach for major depressive disorder. J Proteome Res 11:1741–1748

    Article  CAS  Google Scholar 

  103. Ellis MJ, Gillette M, Carr SA, Paulovich AG, Smith RD, Rodland KK et al (2013) Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov 3:1108–1112

    Article  CAS  Google Scholar 

  104. Lo LH, Huang TL, Shiea J (2009) Acid hydrolysis followed by matrix-assisted laser desorption/ionization mass spectrometry for the rapid diagnosis of serum protein biomarkers in patients with major depression. Rapid Commun Mass Spectrom 23:589–598

    Article  CAS  Google Scholar 

  105. Huang TL, Cho YT, Su H, Shiea J (2013) Principle component analysis combined with matrix-assisted laser desorption ionization mass spectrometry for rapid diagnosing the sera of patients with major depression. Clin Chim Acta 424:175–181

    Article  CAS  Google Scholar 

  106. Khawaja X, Xu J, Liang JJ, Barrett JE (2004) Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: implications for depressive disorders and future therapies. J Neurosci Res 75:451–460

    Article  CAS  Google Scholar 

  107. Lim SW, Kim S, Carroll BJ, Kim DK (2013) T-lymphocyte CREB as a potential biomarker of response to antidepressant drugs. Int J Neuropsychopharmacol 16:967–974

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U.S. Army research office through the Defense University Research Instrumentation Program (DURIP grant #W911NF-11-1-0304). We thank supporters of the Biochemistry & Proteomics Group, specifically Bob and Karen Brown, Bonhomie Imports, Wolverine, and the SciFund challenge contributors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa G. Woods .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Woods, A.G., Iosifescu, D.V., Darie, C.C. (2014). Biomarkers in Major Depressive Disorder: The Role of Mass Spectrometry. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_27

Download citation

Publish with us

Policies and ethics