Skip to main content

Analysis of Fluorinated Proteins by Mass Spectrometry

  • Chapter
  • First Online:
Book cover Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

  • 4223 Accesses

Abstract

19F NMR has been used as a probe for investigating bioorganic and biological systems for three decades. Recent reviews have touted this nucleus for its unique characteristics that allow probing in vivo biological systems without endogenous signals. 19F nucleus is exceptionally sensitive to molecular and microenvironmental changes and thus can be exploited to explore structure, dynamics, and changes in a protein or molecule in the cellular environment. We show how mass spectrometry can be used to assess and characterize the incorporation of fluorine into proteins. This methodology can be applied to a number of systems where 19F NMR is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danielson MA, Falke JJ (1996) Annu Rev Biophys Biomol Struct 25:163–195

    Article  CAS  Google Scholar 

  2. Yu JX, Hallac RR, Chiguru S, Mason RP (2013) Prog Nucl Magn Reson Spectrosc 70:25–49

    Article  CAS  Google Scholar 

  3. Reid DG, Murphy PS (2008) Drug Discov Today 13:473–480

    Article  CAS  Google Scholar 

  4. Luck LA, Falke JJ (1991) Biochemistry 30:6484–6490

    Article  CAS  Google Scholar 

  5. Zemsky J, Rusinova E, Nemerson Y, Luck LA, Ross JB (1999) Proteins 37:709–716

    Article  CAS  Google Scholar 

  6. Crabb JW, Carlson A, Chen Y, Goldflam S, Intres R et al (1998) Protein Sci 7:746–757

    Article  CAS  Google Scholar 

  7. Crowley PB, Kyne C, Monteith WB (2012) Chem Commun (Camb) 48:10681–10683

    Article  CAS  Google Scholar 

  8. Luck LA, Falke JJ (1991) Biochemistry 30:4248–4256

    Article  CAS  Google Scholar 

  9. Yu J, Cui D, Zhao D, Mason RP (2008). In: GH A. Tressaud (ed) Fluorine and health. Elsevier B.V., Amsterdam, pp 198–276

    Google Scholar 

  10. Senear DF, Mendelson RA, Stone DB, Luck LA, Rusinova E, Ross JB (2002) Anal Biochem 300:77–86

    Article  CAS  Google Scholar 

  11. Buer BC, Marsh EN (2012) Protein Sci 21:453–462

    Article  CAS  Google Scholar 

  12. Salwiczek M, Nyakatura EK, Gerling UI, Ye S, Koksch B (2012) Chem Soc Rev 41:2135–2171

    Article  CAS  Google Scholar 

  13. Luck LA, Moravan MJ, Garland JE, Salopek-Sondi B, Roy D (2003) Biosens Bioelectron 19:249–259

    Article  CAS  Google Scholar 

  14. Carmon KS, Baltus RE, Luck LA (2004) Biochemistry 43:14249–14256

    Article  CAS  Google Scholar 

  15. Andreescu S, Luck LA (2008) Anal Biochem 375:282–290

    Article  CAS  Google Scholar 

  16. Tripathi A, Wang J, Luck LA, Suni II (2007) Anal Chem 79:1266–1270

    Article  CAS  Google Scholar 

  17. Sokolov I, Subba-Rao V, Luck LA (2006) Biophys J 90:1055–1063

    Article  CAS  Google Scholar 

  18. Luck LA, Vance JE, O’Connell TM, London RE (1996) J Biomol NMR 7:261–272

    Article  CAS  Google Scholar 

  19. Salopek-Sondi B, Luck LA (2002) Protein Eng 15:855–859

    Article  CAS  Google Scholar 

  20. Salopek-Sondi B, Skeels MC, Swartz D, Luck LA (2003) Proteins 53:273–281

    Article  CAS  Google Scholar 

  21. Salopek-Sondi B, Swartz D, Adams PS, Luck LA (2002) J Biomol Struct Dyn 20:381–387

    Article  CAS  Google Scholar 

  22. Ahmed AH, Loh AP, Jane DE, Oswald RE (2007) J Biol Chem 282:12773–12784

    Article  CAS  Google Scholar 

  23. Magnusson U, Salopek-Sondi B, Luck LA, Mowbray SL (2004) J Biol Chem 279:8747–8752

    Article  CAS  Google Scholar 

  24. Luck LA, Johnson C (2000) Protein Sci 9:2573–2576

    Article  CAS  Google Scholar 

  25. Vyas MN, Jacobson BL, Quiocho FA (1989) J Biol Chem 264:20817–20821

    CAS  Google Scholar 

  26. Luck LA, Falke JJ (1991) Biochemistry 30:4257–4261

    Article  CAS  Google Scholar 

  27. Waxman E, Rusinova E, Hasselbacher CA, Schwartz GP, Laws WR, Ross JB (1993) Anal Biochem 210:425–428

    Article  CAS  Google Scholar 

  28. Holzberger B, Obeid S, Welte W, Diederichs K, Marx A (2012) Chem Sci 3:2924–2931

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Bruce O’Roarke for analyzing the proteins by mass spectrometry. This work has been supported by the NSF for the LCMS instrumentation in the Chemistry Department at the University of Vermont (CHE MRI-0821501, LAL Co-PI), SUNY at Plattsburgh President’s Award and Mini Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda A. Luck Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Luck, L.A. (2014). Analysis of Fluorinated Proteins by Mass Spectrometry. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_14

Download citation

Publish with us

Policies and ethics