Skip to main content

Redox Proteomics: From Bench to Bedside

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

In general protein posttranslation modifications (PTMs) involve the covalent addition of functional groups or molecules to specific amino acid residues in proteins. These modifications include phosphorylation, glycosylation, S-nitrosylation, acetylation, lipidation, among others (Angew Chem Int Ed Engl 44(45):7342–7372, 2005). Although other amino acids can undergo different kinds of oxidative posttranslational modifications (oxPTMs) (Exp Gerontol 36(9):1495–1502, 2001), in this chapter oxPTM will be considered specifically related to Cysteine oxidation, and redox proteomics here is translated as a comprehensive investigation of oxPTMs, in biological systems, using diverse technical approaches. Protein Cysteine residues are not the only amino acid that can be target for oxidative modifications in proteins (Exp Gerontol 36(9):1495–1502, 2001; Biochim Biophys Acta 1814(12):1785–1795, 2011), but certainly it is among the most reactive amino acid (Nature 468(7325):790–795, 2010). Interestingly, it is one of the least abundant amino acid, but it often occurs in the functional sites of proteins (J Mol Biol 404(5):902–916, 2010). In addition, the majority of the Cysteine oxidations are reversible, indicating potential regulatory mechanism of proteins. The global analysis of oxPTMs has been increasingly recognized as an important area of proteomics, because not only maps protein caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS), but also explores protein modulation involving ROS/RNS. Furthermore, the tools and strategies to study this type oxidation are also very abundant and developed, offering high degree of accuracy on the results. As a consequence, the redox proteomics field focuses very much on analyzing Cysteine oxidation in proteins under several experimental conditions and diseases states. Therefore, the identification and localization of oxPTMs within cellular milieu became critical to understand redox regulation of proteins in physiological and pathological conditions, and consequently an important information to develop better strategies for treatment and prevention of diseases associated with oxidative stress.

There is a wide range of techniques available to investigate oxPTMs, including gel-based and non-gel-based separation approaches to be combined with sophisticated methods of detection, identification, and quantification of these modifications. The strategies and approaches to study oxPTMs and the respective applications related to physiological and pathological conditions will be discussed in more detail in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weerapana E et al (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468(7325):790–795

    Article  CAS  Google Scholar 

  2. Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12(6):746–754

    Article  CAS  Google Scholar 

  3. Mannick JB, Schonhoff CM (2002) Nitrosylation: the next phosphorylation? Arch Biochem Biophys 408(1):1–6

    Article  CAS  Google Scholar 

  4. Leonard SE, Carroll KS (2011) Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology. Curr Opin Chem Biol 15(1):88–102

    Article  CAS  Google Scholar 

  5. Mohr S et al (1999) Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 274(14):9427–9430

    Article  CAS  Google Scholar 

  6. Martinez-Ruiz A, Lamas S (2007) Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75(2):220–228

    Article  CAS  Google Scholar 

  7. Thomas JA, Poland B, Honzatko R (1995) Protein sulfhydryls and their role in the antioxidant function of protein S-thiolation. Arch Biochem Biophys 319(1):1–9

    Article  CAS  Google Scholar 

  8. Cotgreave IA, Gerdes RG (1998) Recent trends in glutathione biochemistry—glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242(1):1–9

    Article  CAS  Google Scholar 

  9. Dalle-Donne I et al (2005) S-glutathionylation in human platelets by a thiol-disulfide exchange-independent mechanism. Free Radic Biol Med 38(11):1501–1510

    Article  CAS  Google Scholar 

  10. Percival MD et al (1999) Inhibition of cathepsin K by nitric oxide donors: evidence for the formation of mixed disulfides and a sulfenic acid. Biochemistry 38(41):13574–13583

    Article  CAS  Google Scholar 

  11. Ji Y et al (1999) S-nitrosylation and S-glutathiolation of protein sulfhydryls by S-nitroso glutathione. Arch Biochem Biophys 362(1):67–78

    Article  CAS  Google Scholar 

  12. Cabiscol E, Levine RL (1995) Carbonic anhydrase III. Oxidative modification in vivo and loss of phosphatase activity during aging. J Biol Chem 270(24):14742–14747

    Article  CAS  Google Scholar 

  13. Ward NE et al (1998) Irreversible inactivation of protein kinase C by glutathione. J Biol Chem 273(20):12558–12566

    Article  CAS  Google Scholar 

  14. Cappiello M et al (1996) Specifically targeted modification of human aldose reductase by physiological disulfides. J Biol Chem 271(52):33539–33544

    Article  CAS  Google Scholar 

  15. Davis DA et al (1996) Regulation of HIV-1 protease activity through cysteine modification. Biochemistry 35(7):2482–2488

    Article  CAS  Google Scholar 

  16. Xian M et al (2000) Inhibition of papain by S-nitrosothiols. Formation of mixed disulfides. J Biol Chem 275(27):20467–20473

    Article  CAS  Google Scholar 

  17. Klatt P, Lamas S (2002) c-Jun regulation by S-glutathionylation. Methods Enzymol 348:157–174

    Article  CAS  Google Scholar 

  18. Pineda-Molina E, Lamas S (2002) S-glutathionylation of NF-kappa B subunit p50. Methods Enzymol 359:268–279

    Article  CAS  Google Scholar 

  19. Reynaert NL et al (2006) Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A 103(35):13086–13091

    Article  CAS  Google Scholar 

  20. Shelton MD, Kern TS, Mieyal JJ (2007) Glutaredoxin regulates nuclear factor {kappa}-B and intercellular adhesion molecule in Muller cells: model of diabetic retinopathy. J Biol Chem 282(17):12467–12474

    Article  CAS  Google Scholar 

  21. Gravina SA, Mieyal JJ (1993) Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 32(13):3368–3376

    Article  CAS  Google Scholar 

  22. Fernando MR et al (2006) Mitochondrial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells. FASEB J 20(14):2645–2647

    Article  CAS  Google Scholar 

  23. Su D, Gladyshev VN (2004) Alternative splicing involving the thioredoxin reductase module in mammals: a glutaredoxin-containing thioredoxin reductase 1. Biochemistry 43(38):12177–12188

    Article  CAS  Google Scholar 

  24. Kerwin JF Jr, Lancaster JR Jr, Feldman PL (1995) Nitric oxide: a new paradigm for second messengers. J Med Chem 38(22):4343–4362

    Article  CAS  Google Scholar 

  25. Eu JP et al (2000) An apoptotic model for nitrosative stress. Biochemistry 39(5):1040–1047

    Article  CAS  Google Scholar 

  26. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106(6):675–683

    Article  CAS  Google Scholar 

  27. Hess DT et al (2001) S-nitrosylation: spectrum and specificity. Nat Cell Biol 3(2):E46–E49

    Article  CAS  Google Scholar 

  28. Mannick JB et al (1999) Fas-induced caspase denitrosylation. Science 284(5414):651–654

    Article  CAS  Google Scholar 

  29. Reynaert NL et al (2004) Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci U S A 101(24):8945–8950

    Article  CAS  Google Scholar 

  30. Marshall HE, Stamler JS (2001) Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40(6):1688–1693

    Article  CAS  Google Scholar 

  31. Moller MN et al (2007) Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life 59(4–5):243–248

    Article  Google Scholar 

  32. Wink DA et al (1993) Reactions of the bioregulatory agent nitric oxide in oxygenated aqueous media: determination of the kinetics for oxidation and nitrosation by intermediates generated in the NO/O2 reaction. Chem Res Toxicol 6(1):23–27

    Article  CAS  Google Scholar 

  33. Hogg N (2002) The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol 42:585–600

    Article  CAS  Google Scholar 

  34. Smith BC, Marletta MA (2012) Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr Opin Chem Biol 16(5–6):498–506

    Article  CAS  Google Scholar 

  35. Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10(10):721–732

    CAS  Google Scholar 

  36. Forrester MT et al (2009) Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic Biol Med 46(2):119–126

    Article  CAS  Google Scholar 

  37. Benhar M et al (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320(5879):1050–1054

    Article  CAS  Google Scholar 

  38. Sengupta R et al (2009) Nitric oxide and dihydrolipoic acid modulate the activity of caspase 3 in HepG2 cells. FEBS Lett 583(21):3525–3530

    Article  CAS  Google Scholar 

  39. Ito T, Yamakuchi M, Lowenstein CJ (2011) Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor. J Biol Chem 286(13):11179–11184

    Article  CAS  Google Scholar 

  40. Ckless K et al (2004) In situ detection and visualization of S-nitrosylated proteins following chemical derivatization: identification of Ran GTPase as a target for S-nitrosylation. Nitric Oxide 11(3):216–227

    Article  CAS  Google Scholar 

  41. Reynaert NL et al (2006) In situ detection of S-glutathionylated proteins following glutaredoxin-1 catalyzed cysteine derivatization. Biochim Biophys Acta 1760(3):380–387

    Article  CAS  Google Scholar 

  42. Chouchani ET et al (2011) Proteomic approaches to the characterization of protein thiol modification. Curr Opin Chem Biol 15(1):120–128

    Article  CAS  Google Scholar 

  43. Charles R, Jayawardhana T, Eaton P (2014) Gel-based methods in redox proteomics. Biochim Biophys Acta 1840(2):830–837

    Article  CAS  Google Scholar 

  44. Thamsen M, Jakob U (2011) The redoxome: proteomic analysis of cellular redox networks. Curr Opin Chem Biol 15(1):113–119

    Article  CAS  Google Scholar 

  45. Saurin AT et al (2004) Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci U S A 101(52):17982–17987

    Article  CAS  Google Scholar 

  46. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1

    CAS  Google Scholar 

  47. Chan HL, Sinclair J, Timms JF (2012) Proteomic analysis of redox-dependent changes using cysteine-labeling 2D DIGE. Methods Mol Biol 854:113–128

    Article  CAS  Google Scholar 

  48. Aesif SW et al (2009) In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization. Am J Pathol 175(1):36–45

    Article  CAS  Google Scholar 

  49. Leonard SE, Reddie KG, Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4(9):783–799

    Article  CAS  Google Scholar 

  50. Charles RL et al (2007) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6(9):1473–1484

    Article  CAS  Google Scholar 

  51. Leichert LI et al (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105(24):8197–8202

    Article  CAS  Google Scholar 

  52. Valko M et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  Google Scholar 

  53. Lehtinen MK, Bonni A (2006) Modeling oxidative stress in the central nervous system. Curr Mol Med 6(8):871–881

    Article  CAS  Google Scholar 

  54. Perry JJ, Shin DS, Tainer JA (2010) Amyotrophic lateral sclerosis. Adv Exp Med Biol 685:9–20

    Article  CAS  Google Scholar 

  55. Yan LJ, Orr WC, Sohal RS (1998) Identification of oxidized proteins based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunochemical detection, isoelectric focusing, and microsequencing. Anal Biochem 263(1):67–71

    Article  CAS  Google Scholar 

  56. Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32(9):797–803

    Article  CAS  Google Scholar 

  57. Poon HF et al (2005) Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 39(4):453–462

    Article  CAS  Google Scholar 

  58. Fraser PE, Levesque L, McLachlan DR (1993) Biochemistry of Alzheimer’s disease amyloid plaques. Clin Biochem 26(5):339–349

    Article  CAS  Google Scholar 

  59. Hardy J et al (2006) Tangle diseases and the tau haplotypes. Alzheimer Dis Assoc Disord 20(1):60–62

    Article  Google Scholar 

  60. Binder LI et al (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739(2–3):216–223

    Article  CAS  Google Scholar 

  61. Williams DR (2006) Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J 36(10):652–660

    Article  CAS  Google Scholar 

  62. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545(1):39–50

    Article  CAS  Google Scholar 

  63. Sultana R, Perluigi M, Allan Butterfield D (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169

    Article  CAS  Google Scholar 

  64. Licker V et al (2009) Proteomics in human Parkinson’s disease research. J Proteomics 73(1):10–29

    Article  CAS  Google Scholar 

  65. Basso M et al (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4(12):3943–3952

    Article  CAS  Google Scholar 

  66. Werner CJ et al (2008) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci 6:8

    Article  Google Scholar 

  67. Kumar V et al (2013) Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry. Free Radic Biol Med 58:109–117

    Article  CAS  Google Scholar 

  68. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44(45):7342–7372

    Article  CAS  Google Scholar 

  69. Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36(9):1495–1502

    Article  CAS  Google Scholar 

  70. Di Domenico F et al (2011) Circulating biomarkers of protein oxidation for Alzheimer disease: expectations within limits. Biochim Biophys Acta 1814(12):1785–1795

    Article  Google Scholar 

  71. Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404(5):902–916

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Ckless Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ckless, K. (2014). Redox Proteomics: From Bench to Bedside. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_13

Download citation

Publish with us

Policies and ethics