Skip to main content

Applications for Mass Spectrometry in the Study of Ion Channel Structure and Function

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

Ion channels are intrinsic membrane proteins that form gated ion-permeable pores across biological membranes. Depending on the type, ion channels exhibit sensitivities to a diverse range of stimuli including changes in membrane potential, binding by diffusible ligands, changes in temperature and direct mechanical force. The purpose of these proteins is to facilitate the passive diffusion of ions down their respective electrochemical gradients into and out of the cell, and between intracellular compartments. In doing so, ion channels can affect transmembrane potentials and regulate the intracellular homeostasis of the important second messenger, Ca2+. The ion channels of the plasma membrane are of particular clinical interest due to their regulation of cell excitability and cytosolic Ca2+ levels, and the fact that they are most amenable to manipulation by exogenously applied drugs and toxins. A critical step in improving the pharmacopeia of chemicals available that influence the activity of ion channels is understanding how their three-dimensional structure imparts function. Here, progress has been slow relative to that for soluble protein structures in large part due to the limitations of applying conventional structure determination methods, such as X-ray crystallography, nuclear magnetic resonance imaging, and mass spectrometry, to membrane proteins. Although still an underutilized technique in the assessment of membrane protein structure, recent advances have pushed mass spectrometry to the fore as an important complementary approach to studying the structure and function of ion channels. In addition to revealing the subtle conformational changes in ion channel structure that accompany gating and permeation, mass spectrometry is already being used effectively for identifying tissue-specific posttranslational modifications and mRNA splice variants. Furthermore, the use of mass spectrometry for high-throughput proteomics analysis, which has proven so successful for soluble proteins, is already providing valuable insight into the functional interactions of ion channels within the context of the macromolecular-signaling complexes that they inhabit in vivo. In this chapter, the potential for mass spectrometry as a complementary approach to the study of ion channel structure and function will be reviewed with examples of its application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter EP et al (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18(5):581–586

    CAS  Google Scholar 

  2. Lundstrom K (2004) Structural genomics on membrane proteins: the MePNet approach. Curr Opin Drug Discov Devel 7(3):342–346

    CAS  Google Scholar 

  3. Cross TA et al (2011) Influence of solubilizing environments on membrane protein structures. Trends Biochem Sci 36(2):117–125

    CAS  Google Scholar 

  4. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4(8):649–663

    CAS  Google Scholar 

  5. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818

    CAS  Google Scholar 

  6. Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature 489(7416):400–405

    CAS  Google Scholar 

  7. Hattori M, Gouaux E (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485(7397):207–212

    CAS  Google Scholar 

  8. Jasti J et al (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449(7160):316–323

    CAS  Google Scholar 

  9. Kawate T et al (2009) Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature 460(7255):592–598

    CAS  Google Scholar 

  10. Sobolevsky AI, Rosconi MP, Gouaux E (2009) X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462(7274):745–756

    CAS  Google Scholar 

  11. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346(4):967–989

    CAS  Google Scholar 

  12. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309(5736):897–903

    CAS  Google Scholar 

  13. Payandeh J et al (2011) The crystal structure of a voltage-gated sodium channel. Nature 475(7356):353–358

    CAS  Google Scholar 

  14. Cherezov V et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265

    CAS  Google Scholar 

  15. Rasmussen SG et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387

    CAS  Google Scholar 

  16. Jaakola VP et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    CAS  Google Scholar 

  17. Wu B et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    CAS  Google Scholar 

  18. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    CAS  Google Scholar 

  19. Samways D, Li Z, Egan TM (2014) Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 8:6

    Google Scholar 

  20. Heymann G et al (2013) Inter- and intrasubunit interactions between transmembrane helices in the open state of P2X receptor channels. Proc Natl Acad Sci U S A 110(42):E4045–E4054

    CAS  Google Scholar 

  21. Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25(1):158–170

    CAS  Google Scholar 

  22. Woodward CK, Hilton BD (1979) Hydrogen exchange kinetics and internal motions in proteins and nucleic acids. Annu Rev Biophys Bioeng 8:99–127

    CAS  Google Scholar 

  23. Cerda O, Baek JH, Trimmer JS (2011) Mining recent brain proteomic databases for ion channel phosphosite nuggets. J Gen Physiol 137(1):3–16

    CAS  Google Scholar 

  24. Lemeer S, Heck AJ (2009) The phosphoproteomics data explosion. Curr Opin Chem Biol 13(4):414–420

    CAS  Google Scholar 

  25. Liu XY et al (2008) Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 8(3):582–603

    CAS  Google Scholar 

  26. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262

    CAS  Google Scholar 

  27. Wang H et al (2006) Characterization of the mouse brain proteome using global proteomic analysis complemented with cysteinyl-peptide enrichment. J Proteome Res 5(2):361–369

    CAS  Google Scholar 

  28. Yang X et al (2011) Comprehensive two-dimensional liquid chromatography mass spectrometric profiling of the rat hippocampal proteome. Proteomics 11(3):501–505

    CAS  Google Scholar 

  29. Barrera NP, Robinson CV (2011) Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 80:247–271

    CAS  Google Scholar 

  30. Takamoto K, Chance MR (2006) Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu Rev Biophys Biomol Struct 35:251–276

    CAS  Google Scholar 

  31. Ojanpera I, Kolmonen M, Pelander A (2012) Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. Anal Bioanal Chem 403(5):1203–1220

    Google Scholar 

  32. Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303–316

    CAS  Google Scholar 

  33. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  34. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    CAS  Google Scholar 

  35. Sundelacruz S, Levin M, Kaplan DL (2009) Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Rev 5(3):231–246

    Google Scholar 

  36. Sine SM et al (2010) On the origin of ion selectivity in the Cys-loop receptor family. J Mol Neurosci 40(1–2):70–76

    CAS  Google Scholar 

  37. Traynelis SF et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    CAS  Google Scholar 

  38. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067

    CAS  Google Scholar 

  39. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):a003947

    Google Scholar 

  40. Hodgkin AL, Huxley AF (1952) The components of membrane conductance in the giant axon of Loligo. J Physiol 116(4):473–496

    CAS  Google Scholar 

  41. Eisenberg D et al (1984) Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol 179(1):125–142

    CAS  Google Scholar 

  42. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132

    CAS  Google Scholar 

  43. Hollmann M, Maron C, Heinemann S (1994) N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 13(6):1331–1343

    CAS  Google Scholar 

  44. Bahouth SW, Wang HY, Malbon CC (1991) Immunological approaches for probing receptor structure and function. Trends Pharmacol Sci 12(9):338–343

    CAS  Google Scholar 

  45. Torres GE, Egan TM, Voigt MM (1998) Topological analysis of the ATP-gated ionotropic [correction of ionotrophic] P2X2 receptor subunit. FEBS Lett 425(1):19–23

    CAS  Google Scholar 

  46. Leite JF, Amoscato AA, Cascio M (2000) Coupled proteolytic and mass spectrometry studies indicate a novel topology for the glycine receptor. J Biol Chem 275(18):13683–13689

    CAS  Google Scholar 

  47. Barrera NP et al (2008) Micelles protect membrane complexes from solution to vacuum. Science 321(5886):243–246

    CAS  Google Scholar 

  48. Hopper JT et al (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat Methods 10(12):1206–1208

    CAS  Google Scholar 

  49. Barrera NP et al (2009) Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6(8):585–587

    CAS  Google Scholar 

  50. Laganowsky A et al (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8(4):639–651

    CAS  Google Scholar 

  51. Wang SC et al (2010) Ion mobility mass spectrometry of two tetrameric membrane protein complexes reveals compact structures and differences in stability and packing. J Am Chem Soc 132(44):15468–15470

    CAS  Google Scholar 

  52. Liapakis G, Simpson MM, Javitch JA (2001) The substituted-cysteine accessibility method (SCAM) to elucidate membrane protein structure. Curr Protoc Neurosci. Chapter 4:Unit 4. 15

    Google Scholar 

  53. Roberts JA, Evans RJ (2007) Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors. J Neurosci 27(15):4072–4082

    CAS  Google Scholar 

  54. Roberts JA et al (2009) Contribution of the region Glu181 to Val200 of the extracellular loop of the human P2X1 receptor to agonist binding and gating revealed using cysteine scanning mutagenesis. J Neurochem 109(4):1042–1052

    CAS  Google Scholar 

  55. Li M et al (2008) Gating the pore of P2X receptor channels. Nat Neurosci 11(8):883–887

    CAS  Google Scholar 

  56. Leite JF, Cascio M (2001) Structure of ligand-gated ion channels: critical assessment of biochemical data supports novel topology. Mol Cell Neurosci 17(5):777–792

    CAS  Google Scholar 

  57. Leite JF, Cascio M (2002) Probing the topology of the glycine receptor by chemical modification coupled to mass spectrometry. Biochemistry 41(19):6140–6148

    CAS  Google Scholar 

  58. Xu G, Chance MR (2007) Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev 107(8):3514–3543

    CAS  Google Scholar 

  59. Busenlehner LS, Armstrong RN (2005) Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch Biochem Biophys 433(1):34–46

    CAS  Google Scholar 

  60. Busenlehner LS et al (2004) Stress sensor triggers conformational response of the integral membrane protein microsomal glutathione transferase 1. Biochemistry 43(35):11145–11152

    CAS  Google Scholar 

  61. Man P et al (2007) Defining the interacting regions between apomyoglobin and lipid membrane by hydrogen/deuterium exchange coupled to mass spectrometry. J Mol Biol 368(2):464–472

    CAS  Google Scholar 

  62. Joh NH et al (2008) Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 453(7199):1266–1270

    CAS  Google Scholar 

  63. Gupta S et al (2010) Conformational changes during the gating of a potassium channel revealed by structural mass spectrometry. Structure 18(7):839–846

    CAS  Google Scholar 

  64. Zhu Y et al (2009) Elucidating in vivo structural dynamics in integral membrane protein by hydroxyl radical footprinting. Mol Cell Proteomics 8(8):1999–2010

    CAS  Google Scholar 

  65. Zhou HX, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392

    CAS  Google Scholar 

  66. van Dalen A et al (2002) Influence of lipids on membrane assembly and stability of the potassium channel KcsA. FEBS Lett 525(1–3):33–38

    Google Scholar 

  67. Lee SY et al (2005) Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci U S A 102(43):15441–15446

    CAS  Google Scholar 

  68. Demmers JA et al (2003) Interaction of the K+ channel KcsA with membrane phospholipids as studied by ESI mass spectrometry. FEBS Lett 541(1–3):28–32

    CAS  Google Scholar 

  69. Lin HT et al (2009) MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. J Biol Chem 284(2):1145–1154

    CAS  Google Scholar 

  70. Witze ES et al (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806

    CAS  Google Scholar 

  71. Cantrell AR et al (1997) Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. J Neurosci 17(19):7330–7338

    CAS  Google Scholar 

  72. Fang H et al (2006) Inhibitory role of Ser-425 of the alpha1 2.2 subunit in the enhancement of Cav 2.2 currents by phorbol-12-myristate, 13-acetate. J Biol Chem 281(29):20011–20017

    CAS  Google Scholar 

  73. Koplas PA, Rosenberg RL, Oxford GS (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J Neurosci 17(10):3525–3537

    CAS  Google Scholar 

  74. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210

    CAS  Google Scholar 

  75. Skeberdis VA et al (2006) Protein kinase A regulates calcium permeability of NMDA receptors. Nat Neurosci 9(4):501–510

    CAS  Google Scholar 

  76. Vial C, Tobin AB, Evans RJ (2004) G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 382(Pt 1):101–110

    CAS  Google Scholar 

  77. Siegel JN (2001) Preparation and analysis of phosphorylated proteins. Curr Protoc Immunol Chapter 11:Unit 11.2

    Google Scholar 

  78. Leonard AS et al (2003) cAMP-dependent protein kinase phosphorylation of the acid-sensing ion channel-1 regulates its binding to the protein interacting with C-kinase-1. Proc Natl Acad Sci U S A 100(4):2029–2034

    CAS  Google Scholar 

  79. Tan SE, Wenthold RJ, Soderling TR (1994) Phosphorylation of AMPA-type glutamate receptors by calcium/calmodulin-dependent protein kinase II and protein kinase C in cultured hippocampal neurons. J Neurosci 14(3 Pt 1):1123–1129

    CAS  Google Scholar 

  80. Yan J et al (2008) Profiling the phospho-status of the BKCa channel alpha subunit in rat brain reveals unexpected patterns and complexity. Mol Cell Proteomics 7(11):2188–2198

    CAS  Google Scholar 

  81. Poulter L et al (1989) Structure, oligosaccharide structures, and posttranslationally modified sites of the nicotinic acetylcholine receptor. Proc Natl Acad Sci U S A 86(17):6645–6649

    CAS  Google Scholar 

  82. Beausoleil SA et al (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–1292

    CAS  Google Scholar 

  83. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403

    CAS  Google Scholar 

  84. Park KS et al (2008) Potassium channel phosphorylation in excitable cells: providing dynamic functional variability to a diverse family of ion channels. Physiology (Bethesda) 23:49–57

    CAS  Google Scholar 

  85. Donovan AJ et al (2012) Long QT2 mutation on the Kv11.1 ion channel inhibits current activity by ablating a protein kinase C alpha consensus site. Mol Pharmacol 82(3):428–437

    CAS  Google Scholar 

  86. Liao Z et al (2010) Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node. J Gen Physiol 136(3):247–258

    CAS  Google Scholar 

  87. Mohapatra DP, Park KS, Trimmer JS (2007) Dynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation. Biochem Soc Trans 35(Pt 5):1064–1068

    CAS  Google Scholar 

  88. Park KS, Mohapatra DP, Trimmer JS (2007) Proteomic analyses of K(v)2.1 channel phosphorylation sites determining cell background specific differences in function. Channels (Austin) 1(2):59–61

    Google Scholar 

  89. Kyle BD et al (2013) Specific phosphorylation sites underlie the stimulation of a large conductance, Ca(2+)-activated K(+) channel by cGMP-dependent protein kinase. FASEB J 27(5):2027–2038

    CAS  Google Scholar 

  90. Tian L et al (2004) Distinct stoichiometry of BKCa channel tetramer phosphorylation specifies channel activation and inhibition by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 101(32):11897–11902

    CAS  Google Scholar 

  91. Vetri F et al (2012) Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BK(Ca) and Kir channels. Am J Physiol Heart Circ Physiol 302(6):H1274–H1284

    CAS  Google Scholar 

  92. Schubert R, Nelson MT (2001) Protein kinases: tuners of the BKCa channel in smooth muscle. Trends Pharmacol Sci 22(10):505–512

    CAS  Google Scholar 

  93. Lee JE et al (2012) Mass spectrometric analysis of novel phosphorylation sites in the TRPC4beta channel. Rapid Commun Mass Spectrom 26(17):1965–1970

    CAS  Google Scholar 

  94. Voolstra O et al (2010) Light-dependent phosphorylation of the drosophila transient receptor potential ion channel. J Biol Chem 285(19):14275–14284

    CAS  Google Scholar 

  95. Roberts JA et al (2012) Mass spectrometry analysis of human P2X1 receptors; insight into phosphorylation, modelling and conformational changes. J Neurochem 123(5):725–735

    CAS  Google Scholar 

  96. Falin RA et al (2009) Identification of regulatory phosphorylation sites in a cell volume- and Ste20 kinase-dependent ClC anion channel. J Gen Physiol 133(1):29–42

    CAS  Google Scholar 

  97. Schachter H (2001) Congenital disorders involving defective N-glycosylation of proteins. Cell Mol Life Sci 58(8):1085–1104

    CAS  Google Scholar 

  98. Montpetit ML et al (2009) Regulated and aberrant glycosylation modulate cardiac electrical signaling. Proc Natl Acad Sci U S A 106(38):16517–16522

    CAS  Google Scholar 

  99. Lipton SA et al (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364(6438): p. 626–32

    Google Scholar 

  100. 100. Martinez-Moreno M et al (2005) Direct interaction between the reductase domain of endothelial nitric oxide synthase and the ryanodine receptor. FEBS Lett 579(14):3159–3163

    Google Scholar 

  101. Voss AA et al (2004) Identification of hyperreactive cysteines within ryanodine receptor type 1 by mass spectrometry. J Biol Chem 279(33):34514–34520

    CAS  Google Scholar 

  102. Sliter DA et al (2011) Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. J Biol Chem 286(2):1074–1082

    CAS  Google Scholar 

  103. Sliter DA et al (2008) Mass spectrometric analysis of type 1 inositol 1,4,5-trisphosphate receptor ubiquitination. J Biol Chem 283(51):35319–35328

    CAS  Google Scholar 

  104. Paik WK, Paik DC, Kim S (2007) Historical review: the field of protein methylation. Trends Biochem Sci 32(3):146–152

    CAS  Google Scholar 

  105. Beltran-Alvarez P, Pagans S, Brugada R (2011) The cardiac sodium channel is post-translationally modified by arginine methylation. J Proteome Res 10(8):3712–3719

    CAS  Google Scholar 

  106. Kim D, Cavanaugh EJ (2007) Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates. J Neurosci 27(24):6500–6509

    CAS  Google Scholar 

  107. Cao C et al (2013) Polyester modification of the mammalian TRPM8 channel protein: implications for structure and function. Cell Rep 4(2):302–315

    CAS  Google Scholar 

  108. Zakharian E et al (2009) Inorganic polyphosphate modulates TRPM8 channels. PLoS One 4(4):e5404

    Google Scholar 

  109. Macpherson LJ et al (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445(7127):541–545

    CAS  Google Scholar 

  110. Hoffmann J et al (2010) Studying the stoichiometries of membrane proteins by mass spectrometry: microbial rhodopsins and a potassium ion channel. Phys Chem Chem Phys 12(14):3480–3485

    CAS  Google Scholar 

  111. Catterall WA et al (2006) Regulation of sodium and calcium channels by signaling complexes. J Recept Signal Transduct Res 26(5–6):577–598

    CAS  Google Scholar 

  112. Buraei Z, Yang J (2010) The β subunit of voltage-gated Ca2+ channels. Physiol Rev 90(4):1461–1506

    CAS  Google Scholar 

  113. Chahine M, O’Leary ME (2011) Regulatory role of voltage-gated Na channel beta subunits in sensory neurons. Front Pharmacol 2:70

    CAS  Google Scholar 

  114. Snider J et al (2010) Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. Nat Protoc 5(7):1281–1293

    CAS  Google Scholar 

  115. Marionneau C, Townsend RR, Nerbonne JM (2011) Proteomic analysis highlights the molecular complexities of native Kv4 channel macromolecular complexes. Semin Cell Dev Biol 22(2):145–152

    CAS  Google Scholar 

  116. Wang HY, Malbon CC (2011) Probing the physical nature and composition of signalsomes. J Mol Signal 6(1):1

    Google Scholar 

  117. Bildl W et al (2004) Protein kinase CK2 is coassembled with small conductance Ca(2+)-activated K+ channels and regulates channel gating. Neuron 43(6):847–858

    CAS  Google Scholar 

  118. Zolles G et al (2009) Association with the auxiliary subunit PEX5R/Trip8b controls responsiveness of HCN channels to cAMP and adrenergic stimulation. Neuron 62(6):814–825

    CAS  Google Scholar 

  119. Khanna R, Zougman A, Stanley EF (2007) A proteomic screen for presynaptic terminal N-type calcium channel (CaV2.2) binding partners. J Biochem Mol Biol 40(3):302–314

    CAS  Google Scholar 

  120. Schwenk J et al (2009) Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science 323(5919):1313–1319

    CAS  Google Scholar 

  121. Suginta W et al (2001) Chloride intracellular channel protein CLIC4 (p64H1) binds directly to brain dynamin I in a complex containing actin, tubulin and 14-3-3 isoforms. Biochem J 359(Pt 1):55–64

    CAS  Google Scholar 

  122. Gardezi SR, Taylor P, Stanley EF (2010) Long C terminal splice variant CaV2.2 identified in presynaptic membrane by mass spectrometric analysis. Channels (Austin) 4(1):58–62

    CAS  Google Scholar 

  123. Ross FA et al (2011) Selective expression in carotid body type I cells of a single splice variant of the large conductance calcium- and voltage-activated potassium channel confers regulation by AMP-activated protein kinase. J Biol Chem 286(14):11929–11936

    CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Drs. Carol Robinson (Oxford University, UK), Mark Chance (Case Western, OH, USA), and Jeanne Nerbonne (Washington University, MO, USA) for permission to use published figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien S. K. Samways Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samways, D.S.K. (2014). Applications for Mass Spectrometry in the Study of Ion Channel Structure and Function. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_10

Download citation

Publish with us

Policies and ethics