Skip to main content

The Ordered Origin of the Brain

  • Chapter
  • First Online:
Molecular Origins of Brain and Body Geometry
  • 757 Accesses

Abstract

Organisms which consist of one cell, the protozoa, do not possess the organs that emerged in multicellular species. They have no heart, no stomach and no brain. Yet they already contain, within the single cell, rudimentary structures which later in evolution resulted in large and highly specialized organs. These organelles, as they are called, may be sophisticated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander T et al (2009) Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 25:431–456

    Article  PubMed  CAS  Google Scholar 

  • Butler AB (2012) Evolution of the brain in vertebrates. In: Lazareva OF et al (eds) How animals see the world. Oxford University Press, Oxford, pp 419–437

    Google Scholar 

  • Campbell CBG, Hodos W (1991) The scala naturae revisited: evolutionary scales and anagenesis in comparative psychology. J Comp Psychol 105:211–221

    Article  PubMed  CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. W.H. Freeman and Co, New York, NY

    Google Scholar 

  • Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev Biochem 55:599–630

    Article  PubMed  CAS  Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Finlay BL et al (2001) Developmental structure in brain evolution. Behav Brain Sci 24:263–308

    Article  PubMed  CAS  Google Scholar 

  • Friday A, Ingram DS (1985) The Cambridge encyclopedia of life sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Hager R et al (2012) Genetic architecture supports mosaic brain evolution and independent brain-body size regulation. Nat Commun 3, 1079, 1–5

    Article  PubMed  Google Scholar 

  • Kudo RR (1971) Protozoology. Charles C. Thomas, Springfield, IL

    Google Scholar 

  • Le Douarin NM et al (2012) The neural crest is a powerful regulator of pre-otic brain development. Dev Biol 366:74–82

    Article  PubMed  Google Scholar 

  • Leick V et al (1979) Scanning electron microscopy of the nuclei and nucleoli in Tetrahymena. Hereditas 90:219–226

    Article  Google Scholar 

  • Liu Y, Xiao A (2011) Epigenetic regulation in neural crest development. Birth Defects Res (Part A) 91:788–796

    Article  CAS  Google Scholar 

  • Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428

    Article  PubMed  CAS  Google Scholar 

  • Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Montgomery SH et al (2010) Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis. BMC Biol 8(9):1–19

    Google Scholar 

  • Narita Y, Rijli FM (2009) Hox genes in neural patterning and circuit formation in the mouse hindbrain. Curr Top Dev Biol 88:139–167

    Article  PubMed  CAS  Google Scholar 

  • Purves D et al (eds) (2012) Neuroscience. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Schoenemann PT (2001) Brain scaling, behavioral ability and human evolution. Behav Brain Sci 24(2):293–295

    Article  Google Scholar 

  • Striedter GF (2004) Brain evolution. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, New York, NY, pp 3–21

    Chapter  Google Scholar 

  • Zhang U et al (1993) Ectopic HoxA-1 induces rhombomere transformation in mouse hindbrain. Development 120:2431–2442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Sources of Figures

Sources of Figures

Fig. 19.1 Friday, A. and Ingram, D.S. (Editors) 1985. The Cambridge Encyclopedia of Life Sciences. Cambridge University Press, Cambridge, UK (Fig. 2.26, page 90).

Fig. 19.2 (1) Finlay, B.L. and Darlington R.B. 1995. Linked regularities in the development and evolution of mammalian brains. Science 268: 1578–1584 (Fig. 1, page 1578). (2) Rilling, J.K. 2001. Allometric departures for the human brain provides insights into hominid brain evolution. In: Finlay, B.L. et al. 2001. Developmental Structure in Brain Evolution. Behavioral and Brain Sciences 24: 263–308 (Fig. 1, page 292). (3) Schoenemann, P.T. 2001. Brain scaling, behavioral ability, and human evolution. In: Finlay, B.L. et al. 2001. Developmental Structure in Brain Evolution. Behavioral and Brain Sciences 24: 263–308 (Fig. 1, page 293).

Fig. 19.3 (1) Purves, D. et al. (Editors) 2012. Neuroscience. Sinauer Associates, Sunderland, MA, U.S.A. (Fig. 22.4, page 483). (2) Purves, D. et al. (Editors) 2012. Neuroscience. Sinauer Associates, Sunderland, MA, U.S.A. (Fig. on page 484, Part A).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lima-de-Faria, A. (2014). The Ordered Origin of the Brain. In: Molecular Origins of Brain and Body Geometry. Springer, Cham. https://doi.org/10.1007/978-3-319-06056-9_19

Download citation

Publish with us

Policies and ethics