Skip to main content

Deforming Surface Meshes

  • Chapter
  • 1068 Accesses

Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI,volume 5)

Abstract

We study the problem of maintaining a deforming surface mesh, specified only by a dense sample of n points that move with the surface. We propose a motion model under which the class of \((\varepsilon,\alpha )\)-meshes can be efficiently maintained by a combination of edge flips and insertion and deletion of vertices. We can enforce bounded aspect ratios and a small approximation error throughout the deformation.

Keywords

  • Deformable Surface Mesh
  • Edge flip
  • Local Feature Size (LFS)
  • Diametric Ball
  • Move Sample Points

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-06053-8_4
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-06053-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3–48 (2007)

    CrossRef  Google Scholar 

  2. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22, 481–504 (1999)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12, 125–141 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Baraff, D., Witkin, A.: Large steps in cloth simulation. In: SIGGRAPH, pp. 43–54 (1998)

    Google Scholar 

  5. Beer, G., Smith, I., Duenser, C.: The Boundary Element Method with Programming. Springer, New York (2008)

    MATH  Google Scholar 

  6. Bredno, J., Lehmann, T.M., Spitzer, K.: A general discrete contour model in two, three, and four dimensions for topology-adaptive multichannel segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 25, 550–563 (2003)

    CrossRef  Google Scholar 

  7. Cheng, S.-W., Jin, J.: Edge flips and deforming surface meshes. In: Proceedings of the 28th Annual Symposium on Computational Geometry, pp. 331–340 (2011)

    Google Scholar 

  8. Cheng, S.-W., Jin, J.: Edge flips in surface meshes. Manuscript. http://www.cse.ust.hk/faculty/scheng/pub/deform.pdf (2013)

  9. Cheng, S.-W., Jin, J., Lau., M.-K.: A fast and simple surface reconstruction algorithm. In: Proceedings of the 28th Annual Symposium on Computational Geometry, pp. 69–78 (2012)

    Google Scholar 

  10. Delingette, H.: Towards realistic soft tissue modeling in medical simulation. In: Proceedings of the IEEE: Special Issue on Surgery Simulation, pp. 512–523 (1998)

    Google Scholar 

  11. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Analysis. Cambridge University Press, New York (2006)

    CrossRef  Google Scholar 

  12. Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Giesen, J., Wagner, U.: Shape dimension and intrinsic metric from samples of manifolds. Discrete Comput. Geom. 32, 245–267 (2004)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Glimm, J., Grove, J.W., Li, X.L., Tan, D.C.: Robust computational algorithms for dynamic interface tracking in three dimensions. SIAM J. Sci. Comput. 21, 2240–2256 (1999)

    CrossRef  MathSciNet  Google Scholar 

  15. Hall, W.S.: The Boundary Element Method. Kluwer Academic Publishers, Dordrecht (1994)

    CrossRef  MATH  Google Scholar 

  16. Jiao, X.: Face offsetting: a unified approach for explicit moving interfaces. J. Comput. Phys. 220, 612–625 (2007)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Jin, J.: Surface reconstruction and deformation. Doctoral Dissertation, The Hong Kong University of Science and Technology (2012)

    CrossRef  Google Scholar 

  18. Khayat, R.E.: Three-dimensional boundary element analysis of drop deformation in confined flow for Newtonian and viscoelastic systems. Int. J. Numer. Methods Fluids 34, 241–275 (2000)

    CrossRef  MATH  Google Scholar 

  19. Koch, R.K., Gross, M.H., Carls, F.R., von Büren, D.F., Fankhauser, G., Parish, Y.I.H.: Simulating facial surgery using finite element methods. In: SIGGRAPH, pp. 421–428 (1996)

    Google Scholar 

  20. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33, 627–665 (1996)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Liu, T., Shen, D., Davatzikos, C.: Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage 22, 1790–1801 (2004)

    CrossRef  Google Scholar 

  22. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SIGGRAPH, pp. 154–159 (2003)

    Google Scholar 

  23. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamiltonian Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  24. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24, 957–964 (2005)

    CrossRef  Google Scholar 

  25. Plantinga, S., Vegter, G.: Isotopic meshing of implicit surfaces. Vis. Comput. 23, 45–58 (2007)

    CrossRef  Google Scholar 

  26. Pons, J., Boissonnat, J.D.: Delaunay deformable models: topology-adaptive meshes based on the restricted Delaunay triangulation. In: CVPR, 1–8 (2007)

    Google Scholar 

  27. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  28. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)

    CrossRef  MATH  Google Scholar 

  29. Volino, P., Magnenat-Thalmann, N.: Comparing efficiency of integration methods for cloth simulation. In: Proceedings of the International Conference on Computer Graphics, pp. 265–272 (2001)

    Google Scholar 

  30. Wojtan, C., Thüey, N., Gross, M., Turk, G.: Deforming meshes that split and merge. ACM Trans. Graph. 28 (2009). Article 76

    Google Scholar 

Download references

Acknowledgements

Research supported by the Research Grant Council, Hong Kong, China (project no. 612107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Wing Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheng, SW., Jin, J. (2015). Deforming Surface Meshes. In: Perotto, S., Formaggia, L. (eds) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA SIMAI Springer Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06053-8_4

Download citation