Advertisement

Automatically Retrieving Explanatory Analogies from Webpages

  • Varun Kumar
  • Savita Bhat
  • Niranjan Pedanekar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8416)

Abstract

Explanatory analogies make learning complex concepts easier by elaborately mapping a target concept onto a more familiar source concept. Solutions exist for automatically retrieving shorter metaphors from natural language text, but not for explanatory analogies. In this paper, we propose an approach to find webpages containing explanatory analogies for a given target concept. For this, we propose the use of a ‘region of interest’ (ROI) based on the observation that linguistic markers and source concept often co-occur with various forms of the word ‘analogy’. We also suggest an approach to identify the source concept(s) contained in a retrieved analogy webpage. We demonstrate these approaches on a dataset created using Google custom search to find candidate web pages that may contain analogies.

Keywords

Analogy Webpages Information Retrieval Machine Learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gentner, D., Colhoun, J.: Analogical processes in human thinking and learning. In: Towards a Theory of Thinking, pp. 35–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Gentner, D.: Structure-mapping: A theoretical framework for analogy. Cognitive Science 7(2), 155–170 (1983)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Glynn, S.: The teaching-with-analogies model. Science and Children 44(8), 52–55 (2007)Google Scholar
  5. 5.
    Harrison, A.G., Treagust, D.F.: Teaching with analogies: A case study in grade‐10 optics. J. of Research in Science Teaching 30(10), 1291–1307 (1993)CrossRefGoogle Scholar
  6. 6.
    Newby, T.J., Ertmer, P.A., Stepich, D.A.: Instructional analogies and the learning of concepts. Educational Technology Research and Development 43(1), 5–18 (1995)CrossRefGoogle Scholar
  7. 7.
    Glynn, S.M., Takahashi, T.: Learning from analogy-enhanced science text. J. of Research in Science Teaching 35(10), 1129–1149 (1998)CrossRefGoogle Scholar
  8. 8.
    Iding, M.K.: How analogies foster learning from science texts. Instructional Science 25(4), 233–253 (1997)CrossRefGoogle Scholar
  9. 9.
    Vosniadou, S., Schommer, M.: Explanatory analogies can help children acquire information from expository text. J. of Educational Psychology 80(4), 524 (1988)CrossRefGoogle Scholar
  10. 10.
    Metamia: Analogy as teaching tool, http://www.metamia.com/
  11. 11.
    Narayanan, S.: MetaNet: A Multilingual Metaphor Repository. In: Proc. of the 12th Intl. Cognitive Linguistics Conf. (ICLC 2012), Edmonton, Canada (2013)Google Scholar
  12. 12.
    Neuman, Y., Assaf, D., Cohen, Y., Last, M., Argamon, S., Howard, N., Frieder, O.: Metaphor Identification in Large Texts Corpora. PloS One 8(4), e62343 (2013)Google Scholar
  13. 13.
    Turney, P.D., Neuman, Y., Assaf, D., Cohen, Y.: Literal and metaphorical sense identification through concrete and abstract context. In: Proc. of the 2011 Conf. on the Empirical Methods in Natural Language Processing, pp. 680–690 (2011)Google Scholar
  14. 14.
    Shutova, E., Teufel, S., Korhonen, A.: Statistical metaphor processing. Computational Linguistics 39(2), 301–353 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gentner, D., Bowdle, B., Wolff, P., Boronat, C.: Metaphor is like analogy. In: The Analogical Mind: Perspectives from Cognitive Science, pp. 199–253 (2001)Google Scholar
  16. 16.
    Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proc. of the 41st Annual Meeting on Assoc. for Computational Linguistics, vol. 1. Association for Computational Linguistics (2003)Google Scholar
  17. 17.
    Miller, G.A.: WordNet: a lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  18. 18.
    Witten, I., Milne, D.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: Proc. of AAAI Workshop on Wikipedia and Artificial Intelligence: an Evolving Synergy, pp. 25–30. AAAI Press, Chicago (2008)Google Scholar
  19. 19.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Varun Kumar
    • 1
  • Savita Bhat
    • 1
  • Niranjan Pedanekar
    • 1
  1. 1.Systems Research LabTata Research Development and Design CentrePuneIndia

Personalised recommendations