Metric Spaces for Temporal Information Retrieval

  • Matteo Brucato
  • Danilo Montesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8416)

Abstract

Documents and queries are rich in temporal features, both at the meta-level and at the content-level. We exploit this information to define temporal scope similarities between documents and queries in metric spaces. Our experiments show that the proposed metrics can be very effective for modeling the relevance for different search tasks, and provide insights into an inherent asymmetry in temporal query semantics. Moreover, we propose a simple ranking model that combines the temporal scope similarity with traditional keyword similarities. We experimentally show that it is not worse than traditional keyword-based rankings for non-temporal queries, and that it improves the overall effectiveness for time-based queries.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alonso, O., Strötgen, J., Baeza-Yates, R., Gertz, M.: Temporal information retrieval: Challenges and opportunities. In: 1st Temporal Web Analytics Workshop at WWW, pp. 1–8 (2011)Google Scholar
  2. 2.
    Jones, R., Diaz, F.: Temporal profiles of queries. ACM Transactions on Information Systems (TOIS) 25(3) (2007)Google Scholar
  3. 3.
    Campos, R., Dias, G., Jorge, A.M., Nunes, C.: Enriching temporal query understanding through date identification: how to tag implicit temporal queries? In: Proceedings of the 2nd Temporal Web Analytics Workshop, pp. 41–48. ACM (2012)Google Scholar
  4. 4.
    Berberich, K., Bedathur, S., Alonso, O., Weikum, G.: A language modeling approach for temporal information needs. In: Advances in Information Retrieval, pp. 13–25 (2010)Google Scholar
  5. 5.
    Nunes, S., Ribeiro, C., David, G.: Use of temporal expressions in web search. In: Advances in Information Retrieval, pp. 580–584 (2008)Google Scholar
  6. 6.
    Snodgrass, R.T.: Temporal databases. IEEE Computer 19, 35–42 (1986)CrossRefGoogle Scholar
  7. 7.
    Li, X., Croft, W.: Time-based language models. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, pp. 469–475. ACM (2003)Google Scholar
  8. 8.
    Alonso, O., Gertz, M., Baeza-Yates, R.: On the value of temporal information in information retrieval. In: ACM SIGIR Forum, vol. 41, pp. 35–41. ACM (2007)Google Scholar
  9. 9.
    Verhagen, M., Gaizauskas, R., Schilder, F., Hepple, M., Moszkowicz, J., Pustejovsky, J.: The tempeval challenge: identifying temporal relations in text. Language Resources and Evaluation 43(2), 161–179 (2009)CrossRefGoogle Scholar
  10. 10.
    Strötgen, J., Gertz, M.: Heideltime: High quality rule-based extraction and normalization of temporal expressions. In: Proceedings of the 5th International Workshop on Semantic Evaluation, pp. 321–324. Association for Computational Linguistics, Uppsala (2010)Google Scholar
  11. 11.
    Llorens, H., Derczynski, L., Gaizauskas, R., Saquete, E.: Timen: An open temporal expression normalisation resource. In: Proceedings of the 7th International Conference on Language Resources and Evaluation (2012)Google Scholar
  12. 12.
    Metzler, D., Jones, R., Peng, F., Zhang, R.: Improving search relevance for implicitly temporal queries. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 700–701. ACM (2009)Google Scholar
  13. 13.
    Kanhabua, N., Nørvåg, K.: Determining time of queries for re-ranking search results. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 261–272. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gey, F., Larson, R., Kando, N., Machado, J., Sakai, T.: Ntcir-geotime overview: Evaluating geographic and temporal search. In: NTCIR, vol. 10, pp. 147–153 (2010)Google Scholar
  15. 15.
    Diaz, F., Dumais, S., Efron, M., Radinsky, K., de Rijke, M., Shokouhi, M.: Sigir 2013 workshop on time aware information access (# taia2013). In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1137–1137. ACM (2013)Google Scholar
  16. 16.
    Nunes, S.: Exploring temporal evidence in web information retrieval. In: Future Directions in Information Access (FDIA) (2007)Google Scholar
  17. 17.
    Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)CrossRefMATHGoogle Scholar
  18. 18.
    Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster method. The Computer Journal 16(1), 30–34 (1973)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Black, P.E.: Manhattan distance. Dictionary of algorithms and data structures. US National Institute of Standards and Technology (2006)Google Scholar
  20. 20.
    Shepard, R.N., et al.: Toward a universal law of generalization for psychological science. Science 237(4820), 1317–1323 (1987)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Pustejovsky, J., Castano, J., Ingria, R., Saurí, R., Gaizauskas, R., Setzer, A., Katz, G., Radev, D.: TimeML: Robust specification of event and temporal expressions in text. In: Mani, I., Pustejovsky, J., Gaizauskas, R. (eds.) The Language of time: a Reader. Oxford University Press (2005)Google Scholar
  22. 22.
    Sakai, T.: Evaluating information retrieval metrics based on bootstrap hypothesis tests. Information and Media Technologies 2(4), 1062–1079 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Matteo Brucato
    • 1
  • Danilo Montesi
    • 2
  1. 1.School of Computer ScienceUniversity of MassachusettsAmherstUSA
  2. 2.Department of Computer Science and EngineeringUniversity of BolognaItaly

Personalised recommendations