Blending Vertical and Web Results

A Case Study Using Video Intent
  • Damien Lefortier
  • Pavel Serdyukov
  • Fedor Romanenko
  • Maarten de Rijke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8416)


Modern search engines aggregate results from specialized verticals into the Web search results. We study a setting where vertical and Web results are blended into a single result list, a setting that has not been studied before. We focus on video intent and present a detailed observational study of Yandex’s two video content sources (i.e., the specialized vertical and a subset of the general web index) thus providing insights into their complementary character. By investigating how to blend results from these sources, we contrast traditional federated search and fusion-based approaches with newly proposed approaches that significantly outperform the baseline methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arguello, J., Callan, J., Diaz, F.: Classification-based resource selection. In: CIKM 2009, pp. 1277–1286. ACM (2009a)Google Scholar
  2. 2.
    Arguello, J., Diaz, F., Callan, J., Crespo, J.-F.: Sources of evidence for vertical selection. In: SIGIR 2009, pp. 315–322. ACM (2009b)Google Scholar
  3. 3.
    Arguello, J., Diaz, F., Callan, J.: Learning to aggregate vertical results into web search results. In: CIKM 2011, pp. 201–210. ACM (2011)Google Scholar
  4. 4.
    Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference networks. In: SIGIR 1995, pp. 21–28. ACM (1995)Google Scholar
  5. 5.
    Dumais, S., Cutrell, E., Chen, H.: Optimizing search by showing results in context. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 277–284. ACM (2001)Google Scholar
  6. 6.
    Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: TREC 1993, pp. 243–243. NIST (1994)Google Scholar
  7. 7.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. In: Annals of Statistics, pp. 1189–1232 (2001)Google Scholar
  8. 8.
    Gulin, A., Kuralenok, I., Pavlov, D.: Winning the transfer learning track of Yahoo!’s learning to rank challenge with YetiRank. J. Machine Learning Research 14, 63–76 (2011)Google Scholar
  9. 9.
    Hastie, T., Tibshirani, R., Friedman, J.J.H.: The elements of statistical learning, vol. 1. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kwok, K., Grunfeld, L., Lewis, D.: TREC-3 ad-hoc, routing retrieval and thresholding experiments using PIRCS. In: TREC 1993, pp. 247–247. NIST (1995)Google Scholar
  11. 11.
    Lalmas, M.: Aggregated search. In: Advanced Topics in Information Retrieval, pp. 109–123. Springer (2011)Google Scholar
  12. 12.
    Markovits, G., Shtok, A., Kurland, O., Carmel, D.: Predicting query performance for fusion-based retrieval. In: CIKM 2012, pp. 813–822. ACM (2012)Google Scholar
  13. 13.
    Ponnuswami, A., Pattabiraman, K., Wu, Q., Gilad-Bachrach, R., Kanungo, T.: On composition of a federated web search result page. In: WSDM 2011, pp. 715–724. ACM (2011)Google Scholar
  14. 14.
    Rasolofo, Y., Abbaci, F., Savoy, J.: Approaches to collection selection and results merging for distributed information retrieval. In: CIKM 2001, pp. 191–198. ACM (2001)Google Scholar
  15. 15.
    Sheldon, D., Shokouhi, M., Szummer, M., Craswell, N.: LambdaMerge: merging the results of query reformulations. In: WSDM 2011, pp. 795–804. ACM (2011)Google Scholar
  16. 16.
    Shokouhi, M., Si, L.: Federated search. Foundations and Trends in Information Retrieval 5(1), 1–102 (2011)CrossRefGoogle Scholar
  17. 17.
    Shokouhi, M., Zobel, J.: Robust result merging using sample-based score estimates. ACM Transactions on Information Systems (TOIS) 27(3), 14 (2009)CrossRefGoogle Scholar
  18. 18.
    Snoek, C.G., Worring, M.: Concept-based video retrieval. Foundations and Trends in Information Retrieval 2(4), 215–322 (2008)CrossRefGoogle Scholar
  19. 19.
    Tjin-Kam-Jet, K.-T.T., Hiemstra, D.: Learning to merge search results for efficient distributed information retrieval. In: DIR 2010 (2010)Google Scholar
  20. 20.
    Vinay, V., Cox, I.J., Milic-Frayling, N., Wood, K.: On ranking the effectiveness of searches. In: SIGIR 2006, pp. 398–404. ACM (2006)Google Scholar
  21. 21.
    Voorhees, E.M., Gupta, N.K., Johnson-Laird, B.: Learning collection fusion strategies. In: SIGIR 1995, pp. 172–179. ACM (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Damien Lefortier
    • 1
    • 2
  • Pavel Serdyukov
    • 1
  • Fedor Romanenko
    • 1
  • Maarten de Rijke
    • 2
  1. 1.YandexMoscowRussia
  2. 2.ISLAUniversity of AmsterdamNetherlands

Personalised recommendations