Unified Correspondence

  • Willem Conradie
  • Silvio Ghilardi
  • Alessandra Palmigiano
Part of the Outstanding Contributions to Logic book series (OCTR, volume 5)


The present chapter is aimed at giving a conceptual exposition of the mathematical principles underlying Sahlqvist correspondence theory. These principles are argued to be inherently algebraic and order-theoretic. They translate naturally on relational structures thanks to Stone-type duality theory. The availability of this analysis in the setting of the algebras dual to relational models leads naturally to the definition of an expanded (object) language in which the well-known ‘minimal valuation’ meta-arguments can be encoded, and of a calculus for correspondence of a proof-theoretic style in the expanded language, mechanically computing the first-order correspondent of given propositional formulas. The main advantage brought about by this formal machinery is that correspondence theory can be ported in a uniform way to families of nonclassical logics, ranging from substructural logics to mu-calculi, and also to different semantics for the same logic, paving the way to a uniform correspondence theory.


Sahlqvist correspondence theory Duality Algorithmic correspondence Intuitionistic modal logic mu-calculus 


  1. 1.
    Abramsky S (2005) A Cook’s tour of the finitary non-well-founded sets. In: We will show them: essays in honour of Dov Gabbay, pp 1–18Google Scholar
  2. 2.
    Ackermann W (1935) Untersuchung über das Eliminationsproblem der mathematischen logic. Mathematische Annalen 110:390–413CrossRefGoogle Scholar
  3. 3.
    van Benthem J (1976) Modal reduction principles. J Symbolic Logic 41(2):301–312Google Scholar
  4. 4.
    van Benthem J (1983) Modal logic and classical logic. Bibliopolis, NapoliGoogle Scholar
  5. 5.
    van Benthem J (2001) Correspondence theory. In: Gabbay DM, Guenthner F (eds) Handbook of philosophical logic, vol 3. Kluwer Academic, Dordrecht, pp 325–408Google Scholar
  6. 6.
    van Benthem J (2005) Minimal predicates, fixed-points, and definability. J Symbolic Logic 70(3):696–712Google Scholar
  7. 7.
    van Benthem J (2006) Modal frame correspondence and fixed-points. Studia Logica 83:133–155Google Scholar
  8. 8.
    van Benthem J, Bezhanishvili N, Hodkinson I (2012) Sahlqvist correspondence for modal mu-calculus. Studia Logica 100:31–60Google Scholar
  9. 9.
    Bezhanishvili N, Ghilardi S (2013) Bounded proofs and step frames. In: Logic group preprint series, no 306. Utrecht UniversityGoogle Scholar
  10. 10.
    Bezhanishvili N, Ghilardi S, Jibladze M (2013) Free modal algebras revisited: the step-by-step method. In: Leo Esakia on duality in modal and intuitionistic logics. Outstanding contributions to Logic, vol 4, 2014. SpringerGoogle Scholar
  11. 11.
    Bezhanishvili N, Ghilardi S (2013) Bounded proofs and step frames. In: Proceedings of Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2013), pp 44–58Google Scholar
  12. 12.
    Bezhanishvili N, Kurz K (2007) Free modal algebras: a coalgebraic perspective. In: Proceedings of CALCO 2007, pp 143–157Google Scholar
  13. 13.
    Bull RA (1969) On modal logic with propositional quantifiers. J Symbolic Logic 34:257–263CrossRefGoogle Scholar
  14. 14.
    Chagrov A, Chagrova LA (2006) The truth about algorithmic problems in correspondence theory. In: Governatori G, Hodkinson I, Venema Y (eds) Advances in modal logic, vol 6. College Publications, London, pp 121–138Google Scholar
  15. 15.
    Conradie W, Fomatati Y, Palmigiano A, Sourabh S Sahlqvist correspondence for intuitionistic modal mu-calculus (To appear in Theoretical Computer Science)Google Scholar
  16. 16.
    Conradie W, Goranko V (2008) Algorithmic correspondence and completeness in modal logic III: semantic extensions of the algorithm SQEMA. J Appl Non-class Logics 18:175–211CrossRefGoogle Scholar
  17. 17.
    Conradie W, Goranko V, Vakarelov D (2005) Elementary canonical formulae: a survey on syntactic, algorithmic, and model-theoretic aspects. In: Schmidt R, Pratt-Hartmann I, Reynolds M, Wansing H (eds) Advances in modal logic, vol 5. Kings College, London, pp 17–51Google Scholar
  18. 18.
    Conradie W, Goranko V, Vakarelov D (2006) Algorithmic correspondence and completeness in modal logic I: the core algorithm SQEMA. Logical Methods Comput Sci 2(1:5):1–26Google Scholar
  19. 19.
    Conradie W, Goranko V, Vakarelov D (2006) Algorithmic correspondence and completeness in modal logic. II. Polyadic and hybrid extensions of the algorithm SQEMA. J Logic Comput 16:579–612CrossRefGoogle Scholar
  20. 20.
    Conradie W, Goranko V, Vakarelov D (2010) Algorithmic correspondence and completeness in modal logic. V. Recursive extensions of SQEMA. J Appl Logic 8:319–333CrossRefGoogle Scholar
  21. 21.
    Conradie W, Palmigiano A Algorithmic correspondence and canonicity for non-distributive logics (Submitted)Google Scholar
  22. 22.
    Conradie W, Palmigiano A (2012) Algorithmic correspondence and canonicity for distributive modal logic. Ann Pure Appl Logic 163:338–376Google Scholar
  23. 23.
    Conradie W, Palmigiano A, Sourabh S Algebraic modal correspondence: Sahlqvist and beyond (Submitted)Google Scholar
  24. 24.
    Conradie W, Robinson C An extended Sahlqvist theorem for hybrid logic (In preparation)Google Scholar
  25. 25.
    Coumans D, van Gool S On generalizing free algebras for a functor. J Logic ComputGoogle Scholar
  26. 26.
    Davey BA, Priestley HA (2002) Lattices and order. Cambridge Univerity Press, CambridgeGoogle Scholar
  27. 27.
    Dunn JM, Gehrke M, Palmigiano A (2005) Canonical extensions and relational completeness of some substructural logics. J Symbolic Logic 70(3):713–740CrossRefGoogle Scholar
  28. 28.
    Fine K (1972) In so many possible worlds. Notre Dame J Formal Logic 13:516–520CrossRefGoogle Scholar
  29. 29.
    Frittella S, Palmigiano A, Santocanale L Characterizing uniform upper bounds on the length of \(D\)-chains in finite lattices via correspondence theory for monotone modal logic (In preparation)Google Scholar
  30. 30.
    Gabbay DM, Schmidt RA, Szałas A (2008) Second-order quantifier elimination: foundations, computational aspects and applications. Vol 12 of studies in logic: mathematical logic and foundations. College Publications, LondonGoogle Scholar
  31. 31.
    Galatos N, Jipsen P, Kowalski T, Ono H (2007) Residuated lattices: an algebraic glimpse at substructural logics. Elsevier, AmsterdamGoogle Scholar
  32. 32.
    Gehrke M, Jónsson B (1994) Bounded distributive lattices with operators. Math Japon 40Google Scholar
  33. 33.
    Gehrke M, Nagahashi Y, Venema H (2005) A Sahlqvist theorem for distributive modal logic. Ann Pure Appl Logic 131:65–102CrossRefGoogle Scholar
  34. 34.
    Georgiev D (2006) An implementation of the algorithm SQEMA for computing first-order correspondences of modal formulas, master’s thesis. Sofia University, Faculty of mathematics and computer scienceGoogle Scholar
  35. 35.
    Ghilardi S (1995) An algebraic theory of normal forms. Ann Pure Appl Logic 71:189–245CrossRefGoogle Scholar
  36. 36.
    Ghilardi S, Meloni G (1997) Constructive canonicity in non-classical logics. Ann Pure Appl Logic 86:1–32CrossRefGoogle Scholar
  37. 37.
    Goranko V, Vakarelov D (2001) Sahlqvist formulas in hybrid polyadic modal logics. J Logic Comput 11:737–754CrossRefGoogle Scholar
  38. 38.
    Goranko V, Vakarelov D (2002) Sahlqvist formulas unleashed in polyadic modal languages. In: Wolter F, Wansing H, de Rijke M, Zakharyaschev M (eds) Advances in modal logic, vol 3. World Scientific, Singapore, pp 221–240Google Scholar
  39. 39.
    Goranko V, Vakarelov D (2006) Elementary canonical formulae: extending Sahlqvist theorem. Ann Pure Appl Logic 141(1–2):180–217Google Scholar
  40. 40.
    Kikot S (2009) An extension of Kracht’s theorem to generalized Sahlqvist formulas. J Appl Non-class Logics 19:227–251CrossRefGoogle Scholar
  41. 41.
    Kracht M (1993) How completeness and correspondence theory got married. In: de Rijke M (ed) Diamonds and defaults. Kluwer Academic, Dordrecht, pp 175–214Google Scholar
  42. 42.
    Kurtonina N (1998) Categorical inference and modal logic. J Logic Lang Inform 7:399–411CrossRefGoogle Scholar
  43. 43.
    Kurz A, Palmigiano A (2013) Epistemic updates on algebras. Logical Methods Comput Sci 9(4). doi: 10.2168/LMCS-9(4:17)2013
  44. 44.
    Ma M, Palmigiano A, Sadrzadeh M (2013) Algebraic semantics and model completeness for intuitionistic public announcement logic. Ann Pure Appl Logic 165(4):963–995Google Scholar
  45. 45.
    Sahlqvist H (1975) Correspondence and completeness in the first and second-order semantics for modal logic. In: Kanger S (ed) Proceedings of the 3rd Scandinavian logic symposium, Uppsala 1973. Springer, Amsterdam, pp 110–143Google Scholar
  46. 46.
    Sambin G, Vaccaro V (1989) A new proof of Sahlqvist’s theorem on modal definability and completeness. J Symbolic Logic 54:992–999CrossRefGoogle Scholar
  47. 47.
    Sofronie-Stokkermans V (2000) Duality and canonical extensions of bounded distributive lattices with operators, and applications to the semantics of non-classical logics I. Studia Logica 64(1):93–132CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Willem Conradie
    • 1
  • Silvio Ghilardi
    • 2
  • Alessandra Palmigiano
    • 3
  1. 1.Department of MathematicsUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Department of MathematicsUniversità degli Studi di MilanoMilanItaly
  3. 3.Faculty of Technology Policy and ManagementDelft University of TechnologyDelftThe Netherlands

Personalised recommendations