Skip to main content

Logic and Complexity in Cognitive Science

  • Chapter
  • First Online:
Book cover Johan van Benthem on Logic and Information Dynamics

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 5))

Abstract

This chapter surveys the use of logic and computational complexity theory in cognitive science. We emphasize in particular the role played by logic in bridging the gaps between Marr’s three levels: representation theorems for non-monotonic logics resolve algorithmic/implementation debates, while complexity theory probes the relationship between computational task analysis and algorithms. We argue that the computational perspective allows feedback from empirical results to guide the development of increasingly subtle computational models. We defend this perspective via a survey of the role of logic in several classic problems in cognitive science (the Wason selection task, the frame problem, the connectionism/symbolic systems debate) before looking in more detail at case studies involving quantifier processing and social cognition. In these examples, models developed by Johan van Benthem have been supplemented with complexity analysis to drive successful programs of empirical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more references on the interface between logic and cognition, see also the 2007 special issue of Topoi on “Logic and Cognition”, ed. J. van Benthem, H. Hodges, and W. Hodges; the 2008 special issue of Journal of Logic, Language and Information on “Formal Models for Real People”, ed. M. Counihan; the 2008 special issue of Studia Logica on “Psychologism in Logic?”, ed. H. Leitgeb, including [8]; and the 2013 special issue of Journal of Logic, Language and Information on “Logic and Cognition” ed. J. Szymanik and R. Verbrugge.

  2. 2.

    Siegelmann repeatedly appeals to a result in Siegelmann and Sontag [107] when arguing in later papers that analog neural networks do not require arbitrary precision (and are thus physically realizable). In particular, their Lemma 4.1 shows that for every neural network which computes over real numbers, there exists a neural network which computes over truncated reals (i.e. reals precise only to a finite number of digits). However, the length of truncation required is a function of the length of the computation—longer computations require longer truncated strings. Consequently, if length of computation is allowed to grow arbitrarily, so must the length of the strings of digits over which the computation is performed in a truncated network. Thus, one still must allow computation over arbitrarily precise reals if one is considering the computational properties of analog neural networks in general, i.e. over arbitrarily long computation times.

  3. 3.

    For an overview, see the 2006 special issue of Trends in Cognitive Sciences (vol. 10, no. 7) on probabilistic models of cognition, or [129].

  4. 4.

    However, they do not indicate how such implementational networks avoid their general critique, see [18].

  5. 5.

    The intuitive connection between efficiency and PTIME-computability depends crucially on considering efficiency over arbitrarily large input size \(n\). For example, an algorithm bounded by \(n^{\frac{1}{5}\log \log n}\) could be used practically even though it is not polynomial (since \(n^{\frac{1}{5}\log \log n} > n^2\) only when \(n>e^{e^{10}}\), [61]). Conversely, an algorithm bounded by \(n^{98466506514687}\) is PTIME-computable, but even for small \(n\) it is not practical to implement. We return to these considerations in the following sections.

  6. 6.

    See also [89].

  7. 7.

    However, see [102].

References

  1. Anderson JR (1990) The adaptive character of thought: Studies in cognition. Lawrence Erlbaum, Mahwah

    Google Scholar 

  2. Anderson JR, Lebiere C (1998) The atomic components of thought. Lawrence Erlbaum, Mahwah

    Google Scholar 

  3. Arora S, Barak B (2009) Computational complexity: A modern approach (1st edn). Cambridge University Press, Cambridge

    Google Scholar 

  4. Ausiello G, Crescenzi P, Kann V, Gambosi G, Marchetti-Spaccamela A, Protasi M (2000) Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer, Berlin

    Google Scholar 

  5. Balkenius C, Gärdenfors P (1991) Nonmonotonic inference in neural networks. In: Allen JA, Fikes R, Sandewall E (eds) Proceedings of the second international conference on knowledge representation and reasoning. Morgan Kaufmann, San Mateo pp 32–39

    Google Scholar 

  6. Benacerraf P (1967) God, the devil, and Gödel. Monist 51:9–32

    Article  Google Scholar 

  7. van Benthem J (1986) Essays in logical semantics. Reidel, Dordrecht

    Google Scholar 

  8. van Benthem J (1991) Language in action: Categories, lambdas and dynamic logic. North-Holland, Amsterdam (paperback edition 1995, MIT Press, Cambridge)

    Google Scholar 

  9. van Benthem J (2002) Extensive games as process models. J Logic Lang Inform 11(3):289–313

    Article  Google Scholar 

  10. van Benthem J (2007) Cognition as interaction. In: Proceedings of symposium on cognitive foundations of interpretation. KNAW, Amsterdam, pp 27–38

    Google Scholar 

  11. van Benthem J (2008) Logic and reasoning: Do the facts matter? Stud Logica 88(1):67–84

    Article  Google Scholar 

  12. van Benthem J (2011) Logical dynamics of information and interaction. Cambridge University Press, Cambridge

    Google Scholar 

  13. van Benthem J, Gerbrandy J, Hoshi T, Pacuit E (2009) Merging frameworks for interaction. J Philos Logic 38:491–526

    Article  Google Scholar 

  14. Blutner R (2004) Nonmonotonic inferences and neural networks. Synthese 142:143–174

    Article  Google Scholar 

  15. Bowles S, Gintis H (2011) A cooperative species: Human reciprocity and its evolution. Princeton University Press, Princeton

    Google Scholar 

  16. Cadoli M, Schaerf M (1993) A survey of complexity results for nonmonotonic logics. J Log Program 17(2/3&4):127–160

    Google Scholar 

  17. Camerer C (2003) Behavioral game theory: Experiments in strategic interaction. Princeton University Press, New Jersey

    Google Scholar 

  18. Chalmers D (1990) Why Fodor and Pylyshyn were wrong: The simplest refutation. In: Proceedings of the twelfth annual conference of the cognitive science society. pp 340–347

    Google Scholar 

  19. Chater N, Tenenbaum J, Yuille A (2006) Probabilistic models of cognition: Where next? Trends Cogn Sci 10(7):292–293

    Article  Google Scholar 

  20. Cheng PW, Holyoak KJ, Nisbett RE, Oliver LM (1986) Pragmatic versus syntactic approaches to training deductive reasoning. Cogn Psychol 18:293–328

    Article  Google Scholar 

  21. Chomsky N (1957) Syntactic structures. Mouton de Gruyter, The Hague

    Google Scholar 

  22. Clark A (1993) Associative engines. Bradford Books, Cambridge

    Google Scholar 

  23. Clark A (2011) Supersizing the mind: Embodiment, action, and cognitive extension. Oxford University Press, Oxford

    Google Scholar 

  24. Clark KL (1978) Negation as failure. In: Gallaire H, Minker J (eds) Logic and databases. Plenum Press, New York

    Google Scholar 

  25. Cobham J (1965) The intrinsic computational difficulty of functions. In: Proceedings of the 1964 international congress for logic, methodology, and philosophy of science. North-Holland, Amsterdam, pp 24–30

    Google Scholar 

  26. Cook SA (1971) The complexity of theorem-proving procedures. In STOC ’71: Proceedings of the third annual ACM symposium on theory of computing. ACM Press, New York pp 151–158

    Google Scholar 

  27. Cooper BS (2003) Computability theory: CRC mathematics series. Chapman and Hall/CRC, London

    Google Scholar 

  28. Cosmides L (1989) The logic of social exchange: Has natural selection shaped how humans reason? studies with the Wason selection task. Cognition 31:187–276

    Article  Google Scholar 

  29. Cosmides L, Tooby J (1992) Cognitive adaptations for social exchange. In: Barkow J, Cosmides L, Tooby J (eds) The adapted mind: Evolutionary psychology and the generation of culture. Oxford University Press, Oxford pp 163–228

    Google Scholar 

  30. d’Avila Garcez AS, Lamb LC, Gabbay DM (2002) Neural-symbolic learning systems: foundations and applications. Springer, London

    Google Scholar 

  31. Dégremont C, Kurzen L, Szymanik J (2014) Exploring the tractability border in epistemic tasks. Synthese 191(3):371–408

    Google Scholar 

  32. Dehaene S (1999) The number sense: How the mind creates mathematics. Oxford University Press, New York

    Google Scholar 

  33. Dennett DC (1984) Cognitive wheels: The frame problem of AI. In: Hookway C (ed) Minds, machines and evolution: Philosophical studies. Cambridge University Press, Cambridge

    Google Scholar 

  34. van Ditmarsch H, van der Hoek W, Kooi B (2007) Dynamic epistemic logic. Springer, Dordrecht

    Google Scholar 

  35. Edmonds J (1965) Paths, trees, and flowers. Can J Math 17:449–467

    Article  Google Scholar 

  36. van Emde Boas P (1990) Machine models and simulations. In: van Leeuwen J (ed) Handbook of theoretical computer science. MIT Press, Cambridge pp 1–66

    Google Scholar 

  37. Fagin R (1974) Generalized first-order spectra and polynomial time recognizable sets. In: Karp R (ed) Proceedings of SIAM—AMS on complexity of computation, vol 7. American Mathematical Society pp 43–73

    Google Scholar 

  38. Fagin R, Halpern JY, Moses Y, Vardi MY (1995) Reasoning about knowledge. MIT Press, Cambridge

    Google Scholar 

  39. Feferman S (1995) Penrose’s Gödelian argument. Psyche 2, online publication, available at http://www.calculemus.org/MathUniversalis/NS/10/04feferman.html

  40. Fitting M (2002) Fixpoint semantics for logic programming: A survey. Theoret Comput Sci 278(1–2):25–51

    Article  Google Scholar 

  41. Flobbe L, Verbrugge R, Hendriks P, Krämer I (2008) Children’s application of theory of mind in reasoning and language. J Logic Lang Inform 17(4):417–442

    Article  Google Scholar 

  42. Fodor JA (1983) The modularity of mind: An essay on faculty psychology. MIT Press, Cambridge

    Google Scholar 

  43. Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: A critical analysis. Cognition 28:3–71

    Article  Google Scholar 

  44. Freeman WJ (2000) How brains make up their minds. Columbia University Press, New York

    Google Scholar 

  45. Freeman WJ (1972) Waves, pulses and the theory of neural masses. Prog Theor Biol 2:87–165

    Article  Google Scholar 

  46. Frixione M (2001) Tractable competence. Mind Mach 11(3):379–397

    Article  Google Scholar 

  47. Gärdenfors P (2000) Conceptual spaces: The geometry of thought. MIT Press, Cambridge

    Google Scholar 

  48. Garey MR, Johnson DS (1979) Computers and intractability. W. H. Freeman and Co., San Francisco

    Google Scholar 

  49. van Gelder T (1990) Compositionality: A connectionist variation on a classical theme. Cogn Sci 14:355–364

    Article  Google Scholar 

  50. van Gelder T (1991) Classical questions, radical answers: Connectionism and the structure of mental representations. In: Horgan T, Tienson J (eds) connectionism and the philosophy of mind. Kluwer Academic Publishers, Dordrecht pp 355–381

    Google Scholar 

  51. van Gelder T (1995) What might cognition be, if not computation? J Philos 92(7):345–381

    Article  Google Scholar 

  52. van Gelder T (1998) The dynamical hypothesis in cognitive science. Behav Brain Sci 21(5):615–628

    Google Scholar 

  53. Ghosh S, Meijering B, Verbrugge R (2010) Logic meets cognition: Empirical reasoning in games. In: Boissier O, others (eds) MALLOW, CEUR Workshop Proceedings, vol 627

    Google Scholar 

  54. Ghosh S, Meijering B, Verbrugge R (2014), Strategic reasoning: Building cognitive models from logical formulas. J Logic Lang Inform 23:1–29

    Google Scholar 

  55. Gierasimczuk N, Szymanik J (2011a) Invariance properties of quantifiers and multiagent information exchange. In: Kanazawa M, Kornai A, Kracht M, Seki H (eds) Proceedings of 12th biennial conference on the mathematics of language (MOL 12, Nara, Japan, September 6–8, 2011), vol 6878. Springer, Berlin pp 72–89

    Google Scholar 

  56. Gierasimczuk N, Szymanik J (2011b) A note on a generalization of the muddy children puzzle. In: Apt KR (ed) Proceedings of the 13th conference on theoretical aspects of rationality and knowledge. ACM Digital Library pp 257–264

    Google Scholar 

  57. Gierasimczuk N, van der Maas H, Raijmakers M (2013) Logical and psychological analysis of deductive Mastermind. J Logic Lang Inform 22(3):297–314

    Google Scholar 

  58. Gneezy U, Rustichini A, Vostroknutov A (2010) Experience and insight in the race game. J Econ Behav Organ 75(2):144–155

    Article  Google Scholar 

  59. Gold EM (1967) Language identification in the limit. Inf Control 10:447–474

    Article  Google Scholar 

  60. Griggs RA, Cox JR (1982) The elusive thematic-materials effect in Wason’s selection task. Br J Psychol 73:407–420

    Article  Google Scholar 

  61. Gurevich Y (1993) Feasible functions. London Math Soc Newsl 10(206):6–7

    Google Scholar 

  62. Hawes DR, Vostroknutov A, Rustichini A (2012) Experience and abstract reasoning in learning backward induction. Front Neurosci 6(23)

    Google Scholar 

  63. Hedden T, Zhang J (2002) What do you think I think you think? Strategic reasoning in matrix games. Cognition 85(1):1–36

    Article  Google Scholar 

  64. Hitzler P, Hölldobler S, Seda AK (2004) Logic programs and connectionist networks. J Appl Logic 2(3):245–272

    Article  Google Scholar 

  65. Hölldobler S, Kalinke Y (1994) Toward a new massively parallel computational model for logic programming. In: Proceedings of workshop on combining symbolic and connectionist processing. ECAI-94, Amsterdam

    Google Scholar 

  66. Hoshi T (2010) Merging DEL and ETL. J Logic Lang Inform 19:413–430

    Article  Google Scholar 

  67. Hubbard E, Diester I, Cantlon J, Ansari D, van Opstal F, Troiani V (2008) The evolution of numerical cognition: From number neurons to linguistic quantifiers. J Neurosci 28(46):11,819–11,824

    Google Scholar 

  68. Immerman N (1999) Descriptive complexity. Springer Verlag, Berlin

    Google Scholar 

  69. Isaac A, Hoshi T (2011) Synchronizing diachronic uncertainty. J Logic Lang Info 20:137–159

    Google Scholar 

  70. Johnson-Laird PN, Legrenzi P, Legrenzi MS (1972) Reasoning and a sense of reality. Br J Psychol 63:395–400

    Article  Google Scholar 

  71. Kraus S, Lehmann DJ, Magidor M (1990) Nonmonotonic reasoning, preferential models and cumulative logics. Artif Intell 44(1–2):167–207

    Article  Google Scholar 

  72. Kugel P (1986) Thinking may be more than computing. Cognition 22(2):137–198

    Article  Google Scholar 

  73. Leitgeb H (2003) Nonmonotonic reasoning by inhibition nets II. Int J Uncertainty, Fuzziness and Knowl Based Syst 11(2 (Supplement)):105–135

    Google Scholar 

  74. Leitgeb H (2001) Nonmonotonic reasoning by inhibition nets. Artif Intell 128(1–2):161–201

    Article  Google Scholar 

  75. Leitgeb H (2005) Interpreted dynamical systems and qualitative laws: From neural networks to evolutionary systems. Synthese 146:189–202

    Article  Google Scholar 

  76. Levesque HJ (1988) Logic and the complexity of reasoning. J Philos Logic 17(4):355–389

    Article  Google Scholar 

  77. Li M, Vitányi P (2008) An introduction to Kolmogorov complexity and its applications (3rd edn). Springer, Berlin

    Google Scholar 

  78. Lucas JR (1961) Minds, machines and Gödel. Philosophy 36(137):112–127

    Article  Google Scholar 

  79. Marr D (1983) Vision: A computational investigation into the human representation and processing visual information. W.H. Freeman, San Francisco

    Google Scholar 

  80. McCarthy J (1980) Circumscription–a form of non-monotonic reasoning. Artif Intell 13(1–2):27–39

    Article  Google Scholar 

  81. McCarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence. In: Michie D, Meltzer B (eds) Machine Intelligence, vol 4. Edinburgh University Press, Edinburgh pp 463–502

    Google Scholar 

  82. McCulloch WS, Pitts WH (1943) A logical calculus immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  Google Scholar 

  83. McMillan CT, Clark R, Moore P, Devita C, Grossman M (2005) Neural basis for generalized quantifier comprehension. Neuropsychologia 43:1729–1737

    Article  Google Scholar 

  84. McMillan CT, Clark R, Moore P, Grossman M (2006) Quantifier comprehension in corticobasal degeneration. Brain Cogn 65:250–260

    Article  Google Scholar 

  85. Meijering B, van Maanen L, Verbrugge R (2010) The facilitative effect of context on second-order social reasoning. In: Catrambone R, Ohlsson S (eds) Proceedings of the 32nd annual conference of the cognitive science society. Cognitive Science Society, Austin pp 1423–1428

    Google Scholar 

  86. Meijering B, van Rijn H, Taatgen NA, Verbrugge R (2012) What eye movements can tell about theory of mind in a strategic game. PLoS ONE 7(9):e45,961

    Google Scholar 

  87. Meijering B, van Rijn H, Verbrugge R (2011) I do know what you think I think: Second-order theory of mind in strategic games is not that difficult. In: Proceedings of the 33rd annual meeting of the cognitive science society, Cognitive Science Society, Boston

    Google Scholar 

  88. Mostowski M (1998) Computational semantics for monadic quantifiers. J Appl Non-Class Log 8:107–121

    Article  Google Scholar 

  89. Mostowski M, Wojtyniak D (2004) Computational complexity of the semantics of some natural language constructions. Ann Pure Appl Logic 127(1–3):219–227

    Article  Google Scholar 

  90. Newell A (1981) The knowledge level: Presidential address. AI Mag 2(2):1–20

    Google Scholar 

  91. Pagin P (2012) Communication and the complexity of semantics. In: Werning M, Hinzen W, Machery E (eds) Oxford handbook of compositionality. Oxford University Press, Oxford

    Google Scholar 

  92. Papadimitriou CH (1993) Computational complexity. Addison Wesley, Boston

    Google Scholar 

  93. Penrose R (1994) Shadows of the mind: A search for the missing science of consciousness. Oxford University Press, New York

    Google Scholar 

  94. Pinkas G (1995) Reasoning, nonmonotonicity and learning in connectionist networks that capture propositional knowledge. Artif Intell 77:203–247

    Article  Google Scholar 

  95. Pratt-Hartmann I (2004) Fragments of language. J Logic Lang Inform 13(2):207–223

    Article  Google Scholar 

  96. Pudlák P (1999) A note on applicability of the incompleteness theorem to human mind. Ann Pure Appl Logic 96(1–3):335–342

    Article  Google Scholar 

  97. Raijmakers ME, Mandell DJ, van Es SE, Counihan M (2014) Children’s strategy use when playing strategic games. Synthese 191:355–370

    Google Scholar 

  98. Reiter R (1980) A logic for default reasoning. Artif Intell 13:81–132

    Article  Google Scholar 

  99. Ristad ES (1993) The Language complexity game (Artificial intelligence). MIT Press, Cambridge, MA,

    Google Scholar 

  100. van Rooij I, Stege U, Kadlec H (2005) Sources of complexity in subset choice. J Math Psychol 49(2):160–187

    Google Scholar 

  101. van Rooij I, Wareham T (2007) Parameterized complexity in cognitive modeling: Foundations, applications and opportunities. Comput J 51(3):385–404

    Article  Google Scholar 

  102. van Rooij I (2008) The tractable cognition thesis. Cognitive Sci 32(6):939–984

    Article  Google Scholar 

  103. Sandler U, Tsitolovsky L (2008) Neural cell behavior and fuzzy logic. Springer, New York

    Google Scholar 

  104. Schlotterbeck F, Bott O (2013) Easy solutions for a hard problem? The computational complexity of reciprocals with quantificational antecedents. J Logic Lang Inform 22(4):363–390

    Google Scholar 

  105. Shanahan M (1997) Solving the frame problem: A mathematical investigation of the common sense law of inertia. MIT Press, Cambridge

    Google Scholar 

  106. Shoham Y (1987) A semantical approach to nonmonotonic logics. In: Proceedings of the 2nd symposium on logic in computer science. CEUR Workshop Proceedings pp 275–279

    Google Scholar 

  107. Siegelmann HT, Sontag ED (1994) Analog computation via neural networks. Theoret Comput Sci 131:331–360

    Article  Google Scholar 

  108. Siegelmann HT (1995) Computation beyond the Turing limit. Science 268:545–548

    Article  Google Scholar 

  109. Siegelmann HT (2003) Neural and super-Turing computing. Mind Mach 13:103–114

    Article  Google Scholar 

  110. Simon HA (1957) Models of man: Social and rational. Wiley, New York

    Google Scholar 

  111. Skyrms B (1996) The evolution of the social contract. Cambridge University Press, New York

    Google Scholar 

  112. Skyrms B (2004) The stag hunt and the evolution of social structure. Cambridge University Press, New York

    Google Scholar 

  113. Smolensky P (1987) Connectionism and cognitive architecture: A critical analysis. Southern J Philos 26(supplement):137–163

    Google Scholar 

  114. Smolensky P (1988) On the proper treatment of connectionism. Behav Brain Sci 11:1–74

    Article  Google Scholar 

  115. Spaan E (1993) Complexity of modal logics. Ph.D. thesis, Universiteit van Amsterdam, Amsterdam

    Google Scholar 

  116. Steinert-Threlkeld S, Icard TF (2013) Iterating semantic automata. Linguist Philos 36:151–173

    Google Scholar 

  117. Stenning K, van Lambalgen M (2008) Human reasoning and cognitive science. MIT Press, Cambridge

    Google Scholar 

  118. Sternberg RJ (2002) Cognitive psychology. Wadsworth Publishing, Stamford

    Google Scholar 

  119. Syropoulos A (2008) Hypercomputation: Computing beyond the Church-Turing barrier (Monographs in computer science). Springer, Berlin

    Google Scholar 

  120. Szymanik J (2009) Quantifiers in time and space. Computational complexity of generalized quantifiers in natural language. Ph.D. thesis, University of Amsterdam, Amsterdam

    Google Scholar 

  121. Szymanik J (2007) A comment on a neuroimaging study of natural language quantifier comprehension. Neuropsychologia 45:2158–2160

    Article  Google Scholar 

  122. Szymanik J (2010) Computational complexity of polyadic lifts of generalized quantifiers in natural language. Linguist Philos 33(3):215–250

    Article  Google Scholar 

  123. Szymanik J, Zajenkowski M (2010a) Comprehension of simple quantifiers: Empirical evaluation of a computational model. Cognitive Sci 34(3):521–532

    Article  Google Scholar 

  124. Szymanik J, Zajenkowski M (2011) Contribution of working memory in parity and proportional judgments. Belgian J Linguist 25(1):176–194

    Article  Google Scholar 

  125. Szymanik J, Meijering B, Verbrugge R (2013a) Using intrinsic complexity of turn-taking games to predict participants’ reaction times. In: Proceedings of the 35th annual conference of the cognitive science society. Cognitive Science Society, Austin

    Google Scholar 

  126. Szymanik J, Steinert-Threlkeld S, Zajenkowski M, Icard TF (2013b) Automata and complexity in multiple-quantifier sentence verification. In: Proceedings of the 12th International Conference on Cognitive Modeling, R. West, T. Stewart (eds.), Ottawa, Carleton University, 2013

    Google Scholar 

  127. Szymanik J, Verbrugge R (eds) (2013) Special issue of Journal of Logic, Language, and Information on Logic and Cognition, vol 22, Issue 3, 4

    Google Scholar 

  128. Szymanik J, Zajenkowski M (2010b) Quantifiers and working memory. In: Aloni M, Schulz K (eds) Amsterdam colloquium 2009, LNAI, vol 6042. Springer, Berlin, pp 456–464

    Google Scholar 

  129. Tenenbaum J, Kemp C, Griffiths T, Goodman N (2011) How to grow a mind: Statistics, structure, and abstraction. Science 331(6022):1279–1285

    Article  Google Scholar 

  130. Thorne C (2012) Studying the distribution of fragments of English using deep semantic annotation. In: Proceedings of the ISA8 workshop

    Google Scholar 

  131. Tomaszewicz B (2012) Quantifiers and visual cognition. J Logic Lang Inform 22(3):335–356

    Google Scholar 

  132. Tsotsos J (1990) Analyzing vision at the complexity level. Behav Brain Sci 13(3):423–469

    Article  Google Scholar 

  133. Tversky A, Kahneman D (1983) Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychol Rev 90(4):293–315

    Article  Google Scholar 

  134. Verbrugge R, Mol L (2008) Learning to apply theory of mind. J Logic Lang Inform 17(4):489–511

    Article  Google Scholar 

  135. Verbrugge R (2009) Logic and social cognition: The facts matter, and so do computational models. J Philos Logic 38(6):649–680

    Article  Google Scholar 

  136. Vogels TP, Abbott LF (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J Neurosci 25(46):10786–10795

    Google Scholar 

  137. Wason PC (1968) Reasoning about a rule. Q J Exp Psychol 20:273–281

    Article  Google Scholar 

  138. Wason PC, Shapiro D (1971) Natural and contrived experience in a reasoning problem. Q J Exp Psychol 23:63–71

    Article  Google Scholar 

  139. de Weerd H, Verbrugge R, Verheij B (2013) How much does it help to know what she knows you know? An agent-based simulation study. Artif Intell 199–200: 67–92

    Google Scholar 

  140. Zajenkowski M, Styła R, Szymanik J (2011) A computational approach to quantifiers as an explanation for some language impairments in schizophrenia. J Commun Disord 44(6):595–600

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Alexandru Baltag, Johan van Benthem, Peter Gärdenfors, Iris van Rooij, and Keith Stenning for many comments and suggestions. The first author would also like to thank Douwe Kiela and Thomas Icard for helpful discussions of this material; he was supported by NSF grant 1028130. The second author was supported by NWO Vici grant 277-80-001 and NWO Veni grant 639-021-232. The third author was supported by NWO Vici grant 277-80-001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alistair M. C. Isaac or Jakub Szymanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Isaac, A.M.C., Szymanik, J., Verbrugge, R. (2014). Logic and Complexity in Cognitive Science. In: Baltag, A., Smets, S. (eds) Johan van Benthem on Logic and Information Dynamics. Outstanding Contributions to Logic, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-06025-5_30

Download citation

Publish with us

Policies and ethics