Logic and Learning

  • Nina Gierasimczuk
  • Vincent F. Hendricks
  • Dick de Jongh
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 5)

Abstract

Learning and learnability have been long standing topics of interests within the linguistic, computational, and epistemological accounts of inductive inference. Johan van Benthem’s vision of the “dynamic turn” has not only brought renewed life to research agendas in logic as the study of information processing, but likewise helped bring logic and learning in close proximity. This proximity relation is examined with respect to learning and belief revision, updating and efficiency, and with respect to how learnability fits in the greater scheme of dynamic epistemic logic and scientific method.

Keywords

Dynamic epistemic logic Inductive inference Formal learning theory Belief revision Knowledge update 

References

  1. 1.
    Alchourrón CE, Gärdenfors P, Makinson D (1985) On the logic of theory change: partial meet contraction and revision functions. J Symb Logic 50(2):510–530CrossRefGoogle Scholar
  2. 2.
    Angluin D (1980) Inductive inference of formal languages from positive data. Inf Control 45(2):117–135CrossRefGoogle Scholar
  3. 3.
    Balbach FJ, Zeugmann T (2009) Recent developments in algorithmic teaching. In: Dediu AH, Ionescu AM, Martín-Vide C (eds) LATA’09: Proceedings of 3rd International Conference on Language and Automata Theory and Applications, Tarragona, Spain, 2–8 April 2009. Lecture Notes in Computer Science, vol 5457. Springer, The Netherlands, pp 1–18Google Scholar
  4. 4.
    Baltag A, Gierasimczuk N, Smets S (2011) Belief revision as a truth-tracking process. In: Apt K (ed) TARK’11: Proceedings of the 13th Conference on Theoretical Aspects of Rationality and Knowledge, Groningen, The Netherlands, 12–14 July 2011. ACM, New York, pp 187–190Google Scholar
  5. 5.
    Baltag A, Smets S (2009) Learning by questions and answers: from belief-revision cycles to doxastic fixed points. In: Ono H, Kanazawa M, Queiroz R (eds) WoLLIC’09: Proceedings of 16th International Workshop on Logic, Language, Information and Computation, Tokyo, Japan, 21–24 June 2009. Lecture Notes in Computer Science, vol 5514. Springer, The Netherlands, pp 124–139Google Scholar
  6. 6.
    van Benthem J (2003) Logic and the dynamics of information. Minds Mach 13(4):503–519CrossRefGoogle Scholar
  7. 7.
    van Benthem J (2006) One is a lonely number: on the logic of communication. In: Chatzidakis Z, Koepke P, Pohlers W (eds) LC’02: Proceedings of Logic Colloquium 2002. Lecture Notes in Logic, vol 27. ASL & A.K. Peters, Cergy-Pontoise, pp 96–129Google Scholar
  8. 8.
    van Benthem J (2007) Dynamic logic for belief revision. J Appl Non-Classical Logics 2: 129–155Google Scholar
  9. 9.
    van Benthem J (2007) Rational dynamics and epistemic logic in games. Int Game Theory Rev 9(1):13–45CrossRefGoogle Scholar
  10. 10.
    van Benthem J (2011) Logical dynamics of information and interaction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. 11.
    van Benthem J, Dégremont C (2010) Bridges between dynamic doxastic and doxastic temporal logics. In: Bonanno G, Löwe B, van der Hoek W (eds) LOFT’08: Revised selected papers of 8th Conference on Logic and the Foundations of Game and Decision Theory. Lecture Notes in Computer Science, vol 6006. Springer, New York, pp 151–173Google Scholar
  12. 12.
    van Benthem J, Gerbrandy J, Hoshi T, Pacuit E (2009) Merging frameworks for interaction: DEL and ETL. J Philos Logic 38(5):491–526CrossRefGoogle Scholar
  13. 13.
    Blum L, Blum M (1975) Toward a mathematical theory of inductive inference. Inf Control 28:125–155CrossRefGoogle Scholar
  14. 14.
    Boutilier C (1993) Revision sequences and nested conditionals. IJCAI’93: Proceedings of the 13th International Joint Conference on Artificial Intelligence. Chambery, France, pp 519–525Google Scholar
  15. 15.
    Darwiche A, Pearl J (1997) On the logic of iterated belief revision. Artif Intell 89:1–29CrossRefGoogle Scholar
  16. 16.
    Dégremont C, Gierasimczuk N (2009) Can doxastic agents learn? On the temporal structure of learning. In: He X, Horty J, Pacuit E (eds) LORI 2009: Proceedings of Logic, Rationality, and Interaction, 2nd International Workshop, Chongqing, China, 8–11 Oct 2009. Lecture Notes in Computer Science, vol 5834. Springer, Berlin, pp 90–104Google Scholar
  17. 17.
    Dégremont C, Gierasimczuk N (2011) Finite identification from the viewpoint of epistemic update. Inf Comput 209(3):383–396CrossRefGoogle Scholar
  18. 18.
    Emerson EA, Halpern JY (1986) “Sometimes” and “not never” revisited: on branching versus linear time temporal logic. J ACM 33(1):151–178CrossRefGoogle Scholar
  19. 19.
    Fagin R, Halpern JY, Moses Y, Vardi MY (1995) Reasoning about knowledge. MIT Press, CambridgeGoogle Scholar
  20. 20.
    Gärdenfors P (1988) Knowledge in flux-modelling the dynamics of epistemic states. MIT Press, CambridgeGoogle Scholar
  21. 21.
    Gierasimczuk N (2009) Bridging learning theory and dynamic epistemic logic. Synthese 169(2):371–384CrossRefGoogle Scholar
  22. 22.
    Gierasimczuk N (2010) Knowing one’s limits. Logical analysis of inductive inference. PhD thesis, Universiteit van Amsterdam, The NetherlandsGoogle Scholar
  23. 23.
    Gierasimczuk N, de Jongh D (2013) On the complexity of conclusive update. Comput J 56(3):365–377CrossRefGoogle Scholar
  24. 24.
    Gierasimczuk N, Kurzen L, Velázquez-Quesada FR (2009) Learning and teaching as a game: a sabotage approach. In: He X et al. (eds) LORI 2009: Proceedings of Logic, Rationality, and Interaction, 2nd International Workshop, Chongqing, China, 8–11 Oct 2009. Lecture Notes in Computer Science, vol 5834. Springer, Berlin, pp 119–132Google Scholar
  25. 25.
    Gold EM (1967) Language identification in the limit. Inf Control 10:447–474CrossRefGoogle Scholar
  26. 26.
    Goldszmidt M, Pearl J (1996) Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif Intell 84:57–112CrossRefGoogle Scholar
  27. 27.
    Hendricks V (2003) Active agents. J Logic Lang Inf 12(4):469–495CrossRefGoogle Scholar
  28. 28.
    Hendricks VF (2001) The convergence of scientific knowledge: a vew from the limit. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  29. 29.
    Hendricks VF (2007) Mainstream and formal epistemology. Cambridge University Press, New YorkGoogle Scholar
  30. 30.
    Hintikka J (1962) Knowledge and belief: an introduction to the logic of the two notions. Cornell University Press, CornellGoogle Scholar
  31. 31.
    Jain S, Osherson D, Royer JS, Sharma A (1999) Systems that learn. MIT Press, ChicagoGoogle Scholar
  32. 32.
    Kelly KT (1998a) Iterated belief revision, reliability, and inductive amnesia. Erkenntnis 50: 11–58Google Scholar
  33. 33.
    Kelly KT (1998b) The learning power of belief revision. TARK’98: Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge. Morgan Kaufmann Publishers, San Francisco, pp 111–124Google Scholar
  34. 34.
    Kelly KT (2004) Learning theory and epistemology. In: Niiniluoto I, Sintonen M, Smolenski J (eds) Handbook of epistemology. Kluwer, Dordrecht (Reprinted. In: Arolo-Costa H, Hendricks VF, van Benthem J (2013) A formal epistemology reader. Cambridge University Press, Cambridge)Google Scholar
  35. 35.
    Kelly KT, Schulte O, Hendricks V (1995) Reliable belief revision. Proceedings of the 10th International Congress of Logic, Methodology, and Philosophy of Science. Kluwer Academic Publishers, Dordrecht, pp 383–398Google Scholar
  36. 36.
    Lange S, Zeugmann T (1992) Types of monotonic language learning and their characterization. COLT’92: Proceedings of the 5th Annual ACM Conference on Computational Learning Theory, Pittsburgh, 27–29 July 1992. ACM, New York, pp 377–390Google Scholar
  37. 37.
    Lehrer K (1965) Knowledge, truth and evidence. Analysis 25(5):168–175CrossRefGoogle Scholar
  38. 38.
    Lehrer K (1990) Theory of knowledge. Routledge, LondonGoogle Scholar
  39. 39.
    Martin E, Osherson D (1997) Scientific discovery based on belief revision. J Symb Logic 62(4):1352–1370CrossRefGoogle Scholar
  40. 40.
    Martin E, Osherson D (1998) Elements of scientific inquiry. MIT Press, CambridgeGoogle Scholar
  41. 41.
    van der Meyden R, Wong K (2003) Complete axiomatizations for reasoning about knowledge and branching time. Studia Logica 75(1):93–123CrossRefGoogle Scholar
  42. 42.
    Mukouchi Y (1992) Characterization of finite identification. In: Jantke K (ed) AII’92: Proceedings of the International Workshop on Analogical and Inductive Inference, Dagstuhl castle, Germany, 5–9 Oct 1992. Lecture Notes in Computer Science, vol 642. Springer, Berlin, pp 260–267Google Scholar
  43. 43.
    Nayak AC (1994) Iterated belief change based on epistemic entrenchment. Erkenntnis 41(3):353–390CrossRefGoogle Scholar
  44. 44.
    Osherson D, Stob M, Weinstein S (1986) Systems that learn. MIT Press, CambridgeGoogle Scholar
  45. 45.
    Parikh R, Ramanujam R (2003) A knowledge based semantics of messages. J Logic Lang Inf 12(4):453–467CrossRefGoogle Scholar
  46. 46.
    Plaza J (1989) Logics of public communications. In: Emrich M, Pfeifer M, Hadzikadic M, Ras Z (eds) Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems. Springer, New York, pp 201–216Google Scholar
  47. 47.
    Putnam H (1975) ‘Degree of Confirmation’ and inductive logic, vol 1, chap 17. Cambridge University Press, Cambridge (Reprinted. In: Schilpp PA (ed) (1999) The philosophy of Rudolf Carnap. Library of living philosophers, vol 11)Google Scholar
  48. 48.
    Spohn W (1988) Ordinal conditional functions: a dynamic theory of epistemic states. In: Skyrms B, Harper WL (eds) Causation in decision, belief change, and statistics, vol II. Kluwer, DordrechtGoogle Scholar
  49. 49.
    Stalnaker R (2009) Iterated belief revision. Erkenntnis 70(2):189–209CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nina Gierasimczuk
    • 1
  • Vincent F. Hendricks
    • 3
  • Dick de Jongh
    • 2
  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Media, Cognition and CommunicationUniversity of CopenhagenCopenhagen SDenmark

Personalised recommendations