Skip to main content

Agroecological Engineering to Biocontrol Soil Pests for Crop Health

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 14))

Abstract

Feeding a growing population and ensuring food security whilst protecting ecosystems and natural resources are crucial priorities in times of global changes. Agroecology promotes innovative drivers of change for a smart agriculture that meets the specifications of ecological transition. Managing soil interactions offer largely unexplored potential to increase agricultural yields and reduce pressures on the environment. Crop losses of 10 % are due to soil-borne pests causing root rot, root blackening, wilt, stunting or seedling damping-off. One promising approach is to encourage pest regulation provided by soil interactions to decrease the inputs of pesticides. However, limited success of this approach in field applications raises questions as to how this might be best accomplished.

Here we review advances in plant protection against soil-borne pests and implications for disease-suppressive agrosystems design. Root infection processes are increasingly understood. Plants protect themselves by naturally engineering the composition of their rhizosphere. They fight soil pests both by root production of toxic chemicals and by favoring pest enemies. The analysis of the chemical dialogue offers new perspectives to enhance biocontrol effectiveness of disease-suppressive soils and antagonists. High throughput technologies provide unprecedented knowledge on rhizosphere interactions and implications for crop health. Agroecological engineering approaches overcome the limitations of conventional protection strategies by promoting multi-functional practices harnessing rhizosphere bioprotection. Breeding crop cultivars which capitalize on plant-microbiome interactions or associating plants and biocontrol agents early in their life offers innovative ways to contribute to disease-suppressive agroecosystems design. Integrating interacting species with strong ability to recruit beneficial microorganisms or secrete toxic compounds in mixed cropping systems is a key issue. Based on functional biodiversity management, these systems will provide underpinning ecosystem services and enhance global resiliency of agroecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Monaim MF, Abo-Elyousr KA (2012) Effect of preceding and intercropping crops on suppression of lentil damping-off and root rot disease in New Valley–Egypt. Crop Prot 32:41–46

    Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  PubMed  Google Scholar 

  • Akköprü A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550

    Google Scholar 

  • Anith KN, Momol MT, Kloepper JW, Marois JJ, Olson SM, Jones JB (2004) Efficacy of plant growth-promotin-rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis 88:669–673

    CAS  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    CAS  PubMed  Google Scholar 

  • Bainard LD, Koch AM, Gordon AM, Klironomos JN (2012) Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems. Soil Biol Biochem 45:172–180

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome though plant breeding and agricultural management. Plant soil 360:1–13

    CAS  Google Scholar 

  • Barahona E, Navazo A, Martinez-Granero F, Zea-Bonilla T, Perez-Jimenez RM, Martin M, Rivilla R (2011) A Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability shows improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 77:5412–5419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Eco 68:1–13

    CAS  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 171:4203–4213

    Google Scholar 

  • Bolwerk A, Lagopodi A, Wijfjes A, Lamers G, Chin-A-Woeng TFC, Lugtenberg B, Bloemberg G (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe In 16:983–993

    CAS  Google Scholar 

  • Borrero C, Ordovas J, Trillas MI, Aviles M (2006) Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by Biolog (R). Soil Biol Biochem 38:1631–1637

    CAS  Google Scholar 

  • Boudreau MA (2013) Diseases in intercropping systems. Annu Rev Phytopathol 51:499–519

    CAS  PubMed  Google Scholar 

  • BRIO project – Banking rhizosphere micro-organisms European – Russian Initiative. FP7-KBBE.2010.1.4-06: EU-Russia Partnership initiative in Microbes-Plant Biodiversities

    Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agr Ecosyst Environ 121:233–244

    Google Scholar 

  • Cetintas R, Dickson DW (2004) Persistence and suppressiveness of Pasteuria penetrans to Meloidogyne arenaria race 1. J Nematol 36:540–549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soil 48:489–499

    Google Scholar 

  • Chave M, Dabert P, Brun R, Godon JJ, Poncet C (2008) Dynamics of rhizoplane bacterial communities subjected to physicochemical treatments in hydroponic crops. Crop Prot 27:418–426

    CAS  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo JH (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15:848–864

    PubMed Central  PubMed  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe In 11:1069–1077

    CAS  Google Scholar 

  • Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M (2011) Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Prot 30:1251–1262

    Google Scholar 

  • Damour G (2004) Analyse et modélisation des interactions pour l’eau et bilan de services dans une association banane-canavalia. MS thesis, Institut National Agronomique Paris-Grignon, Paris

    Google Scholar 

  • Datnoff LE, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431

    Google Scholar 

  • Denny TP (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, The Netherlands, pp 573–644

    Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sust Dev 32:227–243

    Google Scholar 

  • Doré T, Makowski D, Malezieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210

    Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417 and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Google Scholar 

  • Fuchs JG, Moënne-Loccoz Y, Défago G (1997) Non-pathogenic Fusarium oxysporum Fo47 induces resistance to Fusarium wilt in tomato. Plant Dis 81:492–496

    Google Scholar 

  • Garbeva P, Van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    CAS  PubMed  Google Scholar 

  • Ghini R, Morandi MAB (2006) Biotic and abiotic factors associated with soil suppressiveness to Rhizoctonia solani. Sci Agric 63:153–160

    CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    CAS  PubMed  Google Scholar 

  • Hage-Ahmed K, Krammer J, Steinkellner S (2013) The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato. Mycorrhiza 23:543–550

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hase S, Takahashi S, Takenaka S, Nakaho K, Arie T, Seo S, Ohashi Y, Takahashi H (2008) Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876

    CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63:3429–3444

    CAS  PubMed  Google Scholar 

  • Hastings A, Byers JE, Crooks JA, Cuddington K, Jones CG, Lambrinos JG, Talley TS, Wilson WG (2007) Ecological engineering in space and time. Ecol Lett 10:153–164

    PubMed  Google Scholar 

  • Hiddink GA, Termorshuizen AJ, Raaijmakers JM, van Bruggen AHC (2004) Effect of mixed cropping on rhizosphere microbial communities and plant health. In: Book of abstracts international congress rhizosphere 2004, Munich, 12–17 Sept 2004

    Google Scholar 

  • Hiddink GA, Termorshuizen AJ, van Bruggen AHC (2010) Mixed cropping and suppression of soilborne diseases. Sust Agric Rev 4:119–146

    Google Scholar 

  • Hooks CR, Wang KH, Ploeg A, McSorley R (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320

    Google Scholar 

  • Irikiin Y, Nishiyama M, Otsuka S, Senoo K (2006) Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system. Appl Soil Ecol 34:27–32

    Google Scholar 

  • Jones DL, Hinsinger P (2008) The rhizosphere: complex by design. Plant Soil 312:1–6

    CAS  Google Scholar 

  • Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 10:2455–2461

    PubMed  Google Scholar 

  • Kattge J, Díaz S, Lavorel S et al (2011) TRY – a global database of plant traits. Glob Chang Biol 17:2905–2935

    PubMed Central  Google Scholar 

  • Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849

    PubMed Central  PubMed  Google Scholar 

  • Kinkel LL, Bakker MG, Schlatter DC (2011) A coevolutionary framework for managing disease-suppressive soils. Annu Rev Phytopathol 49:47–67

    CAS  PubMed  Google Scholar 

  • Kowalchuk GA, Buma DS, De Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Anton Leeuw 81:509–520

    Google Scholar 

  • Kumar N, Krishnappa K, Reddy BMR, Ravichandra NG, Karuna K (2005) Intercropping for the management of root-knot nematode, Meloidogyne incognita in vegetable-based cropping systems. Ind J Nematol 35:46–49

    Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hisinger P (2009) Plant-microbe interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    CAS  Google Scholar 

  • Larkin RP (2008) Relative effects of biological amendments and crop rotations on soil microbial communities and soilborne diseases of potato. Soil Biol Biochem 40:1341–1351

    CAS  Google Scholar 

  • Larkin RP, Hopkins DL, Martin FN (1996) Suppression of Fusarium wilt of watermelon by nonpathogenic Fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopath 86:812–819

    Google Scholar 

  • Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control 42:336–344

    Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    CAS  Google Scholar 

  • Lopez-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 344:1–50

    CAS  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    CAS  PubMed  Google Scholar 

  • Lwin M, Ranamukhaarachchi SL (2006) Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Int J Agri Biol 8:657–660

    Google Scholar 

  • Manici LM, Caputo F, Baruzzi G (2005) Additional experiences to elucidate the microbial component of soil suppressiveness towards strawberry black root rot complex. Ann Appl Biol 146:421–431

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, UK

    Google Scholar 

  • Mazzola M (2004) Assessment of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35–59

    CAS  PubMed  Google Scholar 

  • Mazzola M, Gu YH (2000) Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Phytopathol 90:114–119

    CAS  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    CAS  PubMed  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulate of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Google Scholar 

  • Moonen AC, Barberi P (2008) Functional biodiversity: an agroecosystem approach. Agr Ecosyst Environ 127:7–21

    Google Scholar 

  • M’Piga P, Belanger RR, Paulitz TC, Benhamou N (1997) Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants treated with the endophytic bacterium Pseudomonas fluorescens strain 63–28. Physiol Mol Plant Pathol 50:301–320

    Google Scholar 

  • Myresiotis CK, Karaoglanidis GS, Vryzas Z, Papadopoulou-Mourkidou E (2012) Evaluation of plant growth promoting rhizobacteria, acibenzolar-S-methyl and hymexol for integrated control of Fusarium crown and root rot on tomato. Pest Manag Sci 68:404–411

    CAS  PubMed  Google Scholar 

  • Navarette M, Tchamitchian M, Aissa Madani C, Collange B, Taussig C (2010) Elaborating innovative solutions with experts using a multicriteria evaluation tool. ISDA, Montpellier

    Google Scholar 

  • Navarrete M, Collange B, Montfort F, Mateille T, Tavoillot J, Martiny B, Tchamitchian M (2013). Alternative cropping systems can have contrasting effects on various soil-borne diseases: relevance of a systemic analysis in vegetable cropping systems. Crop Prot. (in press)

    Google Scholar 

  • Neumann G, Timothy SG, Plassard C (2009) Strategies and methods for studying the rhizosphere – the plant science toolbox. Plant Soil 321:431–456

    CAS  Google Scholar 

  • Nguyen MT, Ranamukhaarachchi SL (2010) Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia Solanacearum in tomato and pepper. J Plant Pathol 92:395–406

    CAS  Google Scholar 

  • Nion AA, Toyota K (2008) Suppression of bacterial wilt and fusarium wilt by a Burkholderia nodosa strain isolated from Kalimantan soils, Indonesia. Microbes Environ 23:134–141

    PubMed  Google Scholar 

  • Nowak J, Shulaev V (2003) Priming for transplant stress resistance in in vitro propagation. In vitro Cell Dev-Pl 39:107–124

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments-a review. Appl Soil Ecol 44:101–115

    Google Scholar 

  • Posas MB, Toyota K (2010) Mechanism of tomato bacterial wilt suppression in soil amended with lysine. Microbes Environ 25:83–94

    PubMed  Google Scholar 

  • Posas MB, Toyota K, Islam TMD (2007) Inhibition of bacterial wilt of tomato caused by Ralstonia solanacearum by sugars and amino acids. Microbes Environ 22:290–296

    Google Scholar 

  • Postma J, Schilder MT, Bloem J, van Leeumen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406

    CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Prasanna R, Chaudhary V, Gupta V, Babu S, Kumar A, Shivay YS, Nan L (2013) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136:337–353

    Google Scholar 

  • Prithviraj B, Zhou X, Souleimanov A, Kahn WM, Smith D (2003) A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta 216:43–445

    Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Radwan MA, El-Maadawy EK, Kassem SI, Abu-Elamayem MM (2009) Oil cakes soil amendment effects on Meloidogyne incognita, root-knot nematode infecting tomato. Arch Phytopathol Plant Prot 42:58–64

    CAS  Google Scholar 

  • Ren L, Lou Y, Sakamoto K, Inubushi K, Amemiya Y, Shen Q, Xu G (2010) Effects of arbuscular mycorrhizal colonization on microbial community in rhizosphere soil and Fusarium wilt disease in tomato. Com Soil Sci Plan 41:1399–1410

    CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    CAS  PubMed  Google Scholar 

  • Rumbos CI, Mendoza A, Sikora R, Kiewnick S (2008) Persistence of the nematophagous fungus Paecilomyces lilacinus strain 251 in soil under controlled conditions. Biocontrol Sci Technol 18:1041–1050

    Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    CAS  Google Scholar 

  • Shiomi Y, Nishiyama M, Onizuka T, Marumoto T (1999) Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl Environ Biol 65:3996–4001

    CAS  Google Scholar 

  • Srivastava R, Khalid A, Singh US, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31

    Google Scholar 

  • Steinkellner S, Mammerler R, Vierheilig H (2008) Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. Eur J Plant Pathol 122:395–401

    CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Google Scholar 

  • Taïwo LB, Adebayo DT, Adebayo OS, Adediran JA (2007) Compost and Glomus mosseae for management of bacterial and Fusarium wilts of tomato. Int J Veg Sci 13:49–61

    Google Scholar 

  • Tan H, Zhou S, Deng Z, He M, Cao L (2011) Ribosomal sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biol Control 59:245–254

    Google Scholar 

  • Tan S, Jiang Y, Song S, Huang J, Ling N, Xu Y, Shen Q (2013) Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Cop Prot 43:134–140

    Google Scholar 

  • Tchamitchian M, Collange B, Navarrete M, Peyre G (2011) Multicriteria evaluation of the pathological resilience of in-soil vegetable protected cropping systems. Acta Hortic 893:1239–1246

    Google Scholar 

  • Tomich TP, Brodt S, Ferris H, Galt R, Horwath WR, Kebreab E, Leveau J, Liptzin D, Lubell M, Merel P, Michelmore R, Rosenstock T, Scow K, Six J, Williams N, Yang J (2011) Agroecology: a review from a global-change perspective. Ann Rev Environ Resour 36:193–222

    Google Scholar 

  • Trenbath BR (1976) Plant interactions in mixed crop communities. In: Papendick RI, Sanchez PA, Triplett GB (eds) Multiple cropping. ASA, SSSA, CSSA, Madison, 27:129–169

    Google Scholar 

  • Utkhede R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol 51:393–400

    Google Scholar 

  • Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2006) Selection of bacteria able to control Fusarium oxysporum f. sp. radicis lycopersici in stonewool substrate. J Appl Microbiol 102:461–471

    Google Scholar 

  • Van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Google Scholar 

  • Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Google Scholar 

  • Van Tol RWHM, Van Der Sommen ATC, Boff MIC, Van Bezooijen J, Sabelis MW, Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294

    Google Scholar 

  • Verbruggen E, van der Heijden M, Rillig MC, Kiers ET (2012) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109

    Google Scholar 

  • Wachira PM, Kimenju JW, Okoth SA, Mibey RK (2009) Stimulation of nematode-destroying fungi by organic amendments applied in management of plant parasitic nematode. Asia J Plant Sci 8:153–159

    Google Scholar 

  • Wei Z, Yang XM, Yin SX, Shen QR, Ran W, Xu YC (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Appl Soil Ecol 48:152–159

    Google Scholar 

  • Wei Z, Huang JF, Tan SY, Mei XL, Shen QR, Xu YC (2013) The congeneric strain Ralstonia pickettii QL-A6 of Ralstonia solanacearum as an effective biocontrol agent for bacterial wilt of tomato. Biol Control 65:278–285

    Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193

    CAS  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    CAS  PubMed  Google Scholar 

  • Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M, Prior P (2007) Ralstonia solanacearum strains from Martinique (French West Indies). Exhibiting a new pathogenic potential. Appl Environ Microbiol 73:6790–6801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widnyana IK, Suprapta DN, Sudana IM, Temaja IGRM (2013) Pseudomonas alcaligenes, potential antagonist against fusarium oxysporum f. sp. lycopersicum the cause of fusarium wilt disease on tomato. J Biol Agric Health 3:163–169

    Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430

    CAS  Google Scholar 

  • Wu H, Pratley J, Lemerle D, Haig T (2001) Allelopathy in wheat (Triticum aestivum). Ann Appl Biol 139:1–9

    CAS  Google Scholar 

  • Xue QY, Ding GC, Li SM, Yang Y, Lan CZ, Guo JH, Smalla K (2013) Rhizocompetence and antagonistic activity towards genetically diverse Ralstonia solanacearum strains – an improved strategy for selecting biocontrol agents. Appl Microbiol Biotech 97:1361–1371

    CAS  Google Scholar 

  • Yu JQ (1999) Allelopathic suppression of Pseudomonas solanacearum infection of tomato (Lycopersicon esculentum) in a tomato-Chinese chive (Allium tuberosum) intercropping system. J Chem Ecol 25:2409–2417

    CAS  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Chave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chave, M., Tchamitchian, M., Ozier-Lafontaine, H. (2014). Agroecological Engineering to Biocontrol Soil Pests for Crop Health. In: Ozier-Lafontaine, H., Lesueur-Jannoyer, M. (eds) Sustainable Agriculture Reviews 14. Sustainable Agriculture Reviews, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-06016-3_8

Download citation

Publish with us

Policies and ethics