Skip to main content

Light Scattering by Small Particles and Their Light Heating: New Aspects of the Old Problems

  • Chapter
  • First Online:
Fundamentals of Laser-Assisted Micro- and Nanotechnologies

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 195))

Abstract

A survey of recent results in light scattering by nanoparticles is presented. Special attention is paid to the case of particles from weakly dissipating materials, when the radiative damping prevails over the dissipative losses. It makes the scattering process completely different from the Rayleigh one. Peculiarities of the energy circulation in the near field zone are inspected in detail. The problem of optimization of the energy release in the particle is discussed. The chapter is concluded with consideration of laser heating of a metal particle in liquid important for biological and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, at any \(\ell \) the equation \(G^{(a)}_\ell (\varepsilon )=0\) has an infinite number of roots. The roots different from (6.8) correspond to large values of \(\varepsilon \) and lie beyond the validity range of (6.7). Interference of modes with the same \(\ell \) related to different such roots may result in new interesting phenomena, including cloaking of the particle (the complete suppression of the scattering, which makes the particle invisible), see [24]. However, discussion of these matters lies beyond the scope of the present chapter.

  2. 2.

    The inverted hierarchy does not affect convergence of the multipole expansion because each resonance takes place at its own resonant value of \(\varepsilon \), so that at a given order of the resonance we have just a single partial cross section describing by (6.9).

  3. 3.

    Usually, taking into account sign of strong inequality in (6.11), \((\ell + 1)^\ell \) in its right-hand-side is replaced by 1. Here we do not do that because it is important for the anomalous absorption, which will be discussed in the next section.

  4. 4.

    The conventional dependence \(H_r(q)\) at the anomalous scattering is explained by the fact that this type of the scattering corresponds to a resonant excitation of eigenmodes related to electric polarizability of the particle. For these modes \(H_r = 0\) [2, 3]. Non-zero values of \(H_r\) in the near field correspond to the contribution of the magnetic modes, related to the magnetic polarizability of the particle by the electromagnetic field of the incident wave. For a non-magnetic particle these modes always are non-resonant and therefore have the same amplitude both at the anomalous and Rayleigh scattering.

  5. 5.

    We stress that (6.9), (6.19) should be regarded as the upper theoretical limit for the corresponding cross sections just for the problem in question (a small spatially uniform non-magnetic particle). In other cases these limits may be exceeded considerably, see, e.g., [34].

  6. 6.

    \(R\)-dependence may appear here owing to \(\gamma _\mathrm{{eff}}\), see (6.12).

References

  1. L. Rayleigh, Phil. Mag. 41, 107, 274, 447 (1871)

    Google Scholar 

  2. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Willey, New York, 1998)

    Google Scholar 

  3. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 2000)

    Google Scholar 

  4. M.I. Mishchenko, J.W. Hovenier, L.D. Travis (eds.), Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, San Diego, 2000)

    Google Scholar 

  5. M.I. Mischenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  6. R. Fuchs, K.L. Kliewer, J. Opt. Soc. Am. 58, 319 (1968)

    Article  ADS  Google Scholar 

  7. J.A. Fan et al., Science 328, 1135 (2010)

    Article  ADS  Google Scholar 

  8. J.B. Lassiter et al., Nano Lett. 10, 3184 (2010)

    Article  ADS  Google Scholar 

  9. F. Hao et al., Nano Lett. 8, 3983 (2008)

    Article  ADS  Google Scholar 

  10. J. Zhu et al., Nano Lett. 9, 279 (2009)

    Article  ADS  Google Scholar 

  11. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Norwood, MA, Artech House, 2003)

    MATH  Google Scholar 

  12. A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov, Nanoscale Res. Lett. 1, 84 (2006)

    Article  ADS  Google Scholar 

  13. A.O. Govorov, H.H. Richardson, Nano Today 2, 30 (2007)

    Article  Google Scholar 

  14. G. Baffou, R. Quidant, C. Girard, Appl. Phys. Lett. 94, 153109 (2009)

    Article  ADS  Google Scholar 

  15. J.B. Khurgin, G. Sun, J. Opt. Soc. Am. B 26, 83 (2009)

    Article  ADS  Google Scholar 

  16. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    Article  ADS  Google Scholar 

  17. G. Baffou, R. Quidant, F.J. Garcia de Abajo, ACS Nano 4, 709 (2010)

    Article  Google Scholar 

  18. V. Giannini, A.I. Fernandez-Domnguez, S.C. Heck, S.A. Maier, Chem. Rev. 111, 3888 (2011)

    Article  Google Scholar 

  19. G. Baffou, H. Rigneault, Phys. Rev. B 84, 035415 (2011)

    Article  ADS  Google Scholar 

  20. X. Li, N.P. Hylton, V. Giannini, K.-H. Lee, N.J. Ekins-Daukes, S.A. Maier, Opt. Express 19, A888 (2011)

    Article  ADS  Google Scholar 

  21. S. Barlett, W.W. Duley, Astrophys. J. 464, 805 (1996)

    Article  ADS  Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, Electrodynamics of Contineous Media (Pergamon Press, Oxford, 1989) §8

    Google Scholar 

  23. N. Herlofson, Arkiv foer Fysik 3, 257 (1951)

    Google Scholar 

  24. M.I. Tribelsky, A.E. Miroshnichenko, Y.S. Kivshar, Europhys. Lett. 97, 44005 (2012)

    Article  ADS  Google Scholar 

  25. B.S. Luk’yanchuk, M.I. Tribelsky,2 Anomalous Light Scattering by Small Particles and Inverted Hierarchy of Optical Resonances in Collection of papers dedicated to memory of Prof. M. N. Libenson (The St.-Petersburg Union of Scientists, Russia, 2005) pp. 101–117 (in Russian)

    Google Scholar 

  26. M.I. Tribelsky, B.S. Luk’yanchuk, Phys. Rev. Lett. 97, 263902 (2006)

    Article  ADS  Google Scholar 

  27. M.I. Tribel’skiĭ, JETP 59, 534 (1984)

    Google Scholar 

  28. Z.B. Wang et al., Phys. Rev. B. 70, 035418 (2004)

    Article  ADS  Google Scholar 

  29. E.D. Palik, Handbook of Optical Constants of Solids (AP, New York, 1985–1998)

    Google Scholar 

  30. M.I. Tribelsky, Europhys. Lett. 94, 14004 (2011)

    Article  ADS  Google Scholar 

  31. M.V. Bashevoy, V.A. Fedotov, N.I. Zheludev, Opt. Express 13, 8372 (2005)

    Article  ADS  Google Scholar 

  32. B.S. Luk’yanchuk, M.I. Tribel’skiĭ, V. Ternovskiĭ, J. Opt. Technol. 73, 7 (2006)

    Google Scholar 

  33. B.S. Luk’yanchuk, et al., EEE Photonics Global@Singapore (IPGS), vols. 1&2, pp. 187–190 (2008)

    Google Scholar 

  34. Z. Ruan, S. Fan, Phys. Rev. Lett. 105, 013901 (2010)

    Article  ADS  Google Scholar 

  35. B.S. Luk’yanchuk et al., New J. Phys. 14, 093022 (2012)

    Article  Google Scholar 

  36. X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Lasers Med. Sci. 23, 217228 (2008)

    Article  Google Scholar 

  37. I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 54, 631651 (2002)

    Article  Google Scholar 

  38. R.R. Anderson, J.A. Parrish, Science 220, 524–527 (1983)

    Article  ADS  Google Scholar 

  39. G. Han, P. Ghosh, M. De, V.M. Rotello, NanoBioTechnology 3, 40–45 (2007)

    Article  Google Scholar 

  40. A.G. Skirtach, C. Dejugnat, D. Braun, A.S. Susha, A.L. Rogach, W.J. Parak, H. Möhwald, G.B. Sukhorukov, Nano Lett. 5, 13711377 (2005)

    Article  Google Scholar 

  41. A.N. Volkov, C. Sevilla, L.V. Zhigilei, Appl. Surf. Sci. 253, 6394–6399 (2007)

    Article  ADS  Google Scholar 

  42. H.H. Richardson, M.T. Carlson, P.J. Tandler, P. Hernandez, A.O. Govorov, Nano Lett. 9, 1139–1146 (2009)

    Article  ADS  Google Scholar 

  43. G.W. Hanson, S.K. Patch, J. Appl. Phys. 106, 054309 (2009)

    Article  ADS  Google Scholar 

  44. E. Sassaroni, K.C.P. Li, B.E. O’Neill, Phys. Med. Biol. 54, 5541 (2009)

    Article  Google Scholar 

  45. S. Bruzzone, M. Malvaldi, J. Phys. Chem. 113, 15805 (2009)

    Google Scholar 

  46. G. Baffou, H. Rigneault, Phys. Rev. B 84, 035415-1-13 (2011)

    Google Scholar 

  47. M.I. Tribelsky et al., Phys. Rev. X. 1, 021024 (2011)

    Google Scholar 

Download references

Acknowledgments

This study was partially supported by RFBR, research project No 12-02-00391_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Tribelsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tribelsky, M.I., Luk’yanchuk, B.S. (2014). Light Scattering by Small Particles and Their Light Heating: New Aspects of the Old Problems. In: Veiko, V., Konov, V. (eds) Fundamentals of Laser-Assisted Micro- and Nanotechnologies. Springer Series in Materials Science, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-05987-7_6

Download citation

Publish with us

Policies and ethics