Advertisement

Built-in 3-Dimensional Hamming Multiple-Error Correcting Scheme to Mitigate Radiation Effects in SRAM-Based FPGAs

  • B. Chagun Basha
  • Stanisław J. Piestrak
  • Sébastien Pillement
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8405)

Abstract

SRAM-based FPGAs have been employed extensively in many applications to implement adaptable systems whose functionalities can be changed at runtime. Unfortunately, even in terrestrial applications the SRAM configuration memory of FPGA devices is highly susceptible to radiation which may cause not only single but also multiple errors in physically adjacent memory cells, called Multiple Bit Upsets (MBUs). This paper proposes a new built-in 3-Dimensional Hamming (3DH) error correcting scheme to mitigate MBUs. The estimations of the probability of occurrence of undetected multiple errors indicate significant improvement of the error correction capabilities of the 3DH scheme proposed here, compared to known 2DH and 1DH schemes. The other important advantage of the new scheme is that it can provide faster reconfiguration of configuration frames affected by multiple errors, because error correction can be done using an internal bus alone.

Keywords

Data Frame Error Pattern Soft Error Cyclic Redundancy Check FPGA Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altera Corp.: Stratix V Device Handbook. Device Interfaces and Integration. SEU Mitigation for Stratix V Devices, vol. 1, ch. 9. Altera Corp., San Jose (June 2013)Google Scholar
  2. 2.
    Argyrides, C., et al.: Matrix codes for reliable and cost efficient memory chips. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(3), 420–428 (2011)CrossRefGoogle Scholar
  3. 3.
    Carmichael, C., et al.: Correcting single-event upsets through Virtex partial configuration. Appl. Note XAPP216 (v1.0) (June 1, 2000)Google Scholar
  4. 4.
    Hsu, C.-L., et al.: High-performance 3D-SRAM architecture design. In: Proc. IEEE Asia Pacific Conf. Circuits and Systems, pp. 907–910 (2010)Google Scholar
  5. 5.
    Chapman, K.: SEU strategies for Virtex-5 devices. Appl. Note XAPP864 (v2.0) (April 1, 2010)Google Scholar
  6. 6.
    Kastensmidt, F.L., et al.: Fault-Tolerance Techniques for SRAM-Based FPGAs. Springer, Dordrecht (2006)Google Scholar
  7. 7.
    Quinn, H., et al.: Radiation-induced multi-bit upsets in SRAM-based FPGAs. IEEE Trans. Nucl. Sci. 52(6), 2455–2461 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Quinn, H., et al.: Static proton and heavy ion testing of the Xilinx Virtex-5 device. In: Proc. IEEE Workshop on Radiation Effects Data, Honolulu, HI, USA, July 23-27, pp. 177–184 (2007)Google Scholar
  9. 9.
    Takai, H., et al.: Soft error rate estimations of the Kintex-7 FPGA within the ATLAS Liquid Argon (LAr) Calorimeter. In: TWEPP 2013, Perugia, Italy, September 23-27 (2013)Google Scholar
  10. 10.
    Lin, S., Costello Jr., D.J.: Error Control Coding: Fundamentals and Applications, 2nd edn. Prentice-Hall, Englewood Cliffs (2004)Google Scholar
  11. 11.
    Pathak, M., et al.: Reliability and performance-aware 3D SRAM design. In: Proc. IEEE 54th Int. Midwest Symp. Circuits and Systems, pp. 1–4 (2011)Google Scholar
  12. 12.
    Park, S.P., et al.: Soft-error-resilient FPGAs using built-in 2-D Hamming product code. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(2), 248–256 (2012)CrossRefGoogle Scholar
  13. 13.
    Xilinx, Inc.: Virtex FPGA series configuration and readback. Appl. Note XAPP138 (March 2006)Google Scholar
  14. 14.
    Xilinx, Inc.: 7 Series FPGAs Configuration: User Guide (October 22, 2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • B. Chagun Basha
    • 1
  • Stanisław J. Piestrak
    • 2
  • Sébastien Pillement
    • 3
  1. 1.IETRUniversité de Rennes 1France
  2. 2.IJLUniversité de LorraineFrance
  3. 3.IETR, Polytech’NantesLUNAM UniversitéFrance

Personalised recommendations