Advertisement

FPGA-Based High Performance AES-GCM Using Efficient Karatsuba Ofman Algorithm

  • Karim M. Abdellatif
  • R. Chotin-Avot
  • H. Mehrez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8405)

Abstract

AES-GCM has been utilized in various security applications. It consists of two components: an Advanced Encryption Standard (AES) engine and a Galois Hash (GHASH) core. The performance of the system is determined by the GHASH architecture because of the inherent computation feedback. This paper introduces a modification for the pipelined Karatsuba Ofman Algorithm (KOA)-based GHASH. In particular, the computation feedback is removed by analyzing the complexity of the computation process. The proposed GHASH core is evaluated with three different implementations of AES ( BRAMs-based SubBytes, composite field-based SubBytes, and LUT-based SubBytes). The presented AES-GCM architectures are implemented using Xilinx Virtex5 FPGAs. Our comparison to previous work reveals that our architectures are more performance-efficient (Thr. /Slices).

Keywords

AES-GCM FPGAs GHASH Karatsuba Ofman Algorithm (KOA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McGrew, D.A., Viega, J.: The security and performance of the galois/Counter mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    IEEE Standard for Local and metropolitan area networks–Media Access Control (MAC) Security Amendment 1: Galois Counter Mode–Advanced Encryption Standard– 256 (GCM-AES-256) Cipher Suite. IEEEGoogle Scholar
  3. 3.
    Satoh, A.: High-Speed Hardware Architectures for Authenticated Encryption Mode GCM. In: IEEE International Symposium on Circuits and Systems (ISCAS), p. 4 (2006)Google Scholar
  4. 4.
    Crenne, J., Cotret, P., Gogniat, G., Tessier, R., Diguet, J.: Efficient Key-Dependent Message Authentication in Reconfigurable Hardware. In: International Conference on Field-Programmable Technology (FPT), pp. 1–6 (2011)Google Scholar
  5. 5.
    Abdellatif, K.M., Chotin-Avot, R., Mehrez, H.: High Speed Authenticated Encryption for Slow Changing Key Applications Using Reconfigurable Devices. In: IEEE Wireless Days (2013)Google Scholar
  6. 6.
    Zhou, G., Michalik, H., Hinsenkamp, L.: Efficient and High-Throughput Implementations of AES-GCM on FPGAs. In: International Conference on Field-Programmable Technology (FPT), pp. 185–192 (2007)Google Scholar
  7. 7.
    Zhou, G., Michalik, H.: Improving Throughput of AES-GCM with Pipelined Karatsuba Multipliers on FPGAs. In: Reconfigurable Computing: Architectures, Tools and Applications, pp. 193–203 (2009)Google Scholar
  8. 8.
    Henzen, L., Fichtner, W.: FPGA Parallel-Pipelined AES-GCM Core for 100G Ethernet Applications. pp. 202–205 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Karim M. Abdellatif
    • 1
  • R. Chotin-Avot
    • 1
  • H. Mehrez
    • 1
  1. 1.LIP6-SoC LaboratoryUniversity of Paris VIFrance

Personalised recommendations